Suppr超能文献

使用 IBM SPSS SW 工具与小波变换对智能家居护理中的物联网内的 CO₂ 进行预测。

Using the IBM SPSS SW Tool with Wavelet Transformation for CO₂ Prediction within IoT in Smart Home Care.

机构信息

Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava 70800, Czech Republic.

出版信息

Sensors (Basel). 2019 Mar 21;19(6):1407. doi: 10.3390/s19061407.

Abstract

Standard solutions for handling a large amount of measured data obtained from intelligent buildings are currently available as software tools in IoT platforms. These solutions optimize the operational and technical functions managing the quality of the indoor environment and factor in the real needs of residents. The paper examines the possibilities of increasing the accuracy of CO₂ predictions in Smart Home Care (SHC) using the IBM SPSS software tools in the IoT to determine the occupancy times of a monitored SHC room. The processed data were compared at daily, weekly and monthly intervals for the spring and autumn periods. The Radial Basis Function (RBF) method was applied to predict CO₂ levels from the measured indoor and outdoor temperatures and relative humidity. The most accurately predicted results were obtained from data processed at a daily interval. To increase the accuracy of CO₂ predictions, a wavelet transform was applied to remove additive noise from the predicted signal. The prediction accuracy achieved in the selected experiments was greater than 95%.

摘要

目前,物联网平台中的软件工具为处理大量从智能建筑中获得的测量数据提供了标准解决方案。这些解决方案优化了管理室内环境质量的操作和技术功能,并考虑到了居民的实际需求。本文探讨了使用物联网中的 IBM SPSS 软件工具提高智能家居护理 (SHC) 中 CO₂ 预测精度的可能性,以确定监测 SHC 房间的占用时间。在春季和秋季,对每日、每周和每月的处理后数据进行了比较。径向基函数 (RBF) 方法用于根据测量的室内外温度和相对湿度预测 CO₂ 水平。从每日间隔处理的数据中获得了最准确的预测结果。为了提高 CO₂ 预测的准确性,应用了小波变换从预测信号中去除附加噪声。在所选择的实验中,实现的预测精度大于 95%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/652a/6470816/7ccdb77ab446/sensors-19-01407-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验