Suppr超能文献

与细胞对话:细胞界面处的半导体纳米材料

Talking to cells: semiconductor nanomaterials at the cellular interface.

作者信息

Rotenberg Menahem Y, Tian Bozhi

机构信息

The James Franck Institute, the University of Chicago, Chicago, IL 60637.

Department of Chemistry, the University of Chicago, Chicago, IL 60637.

出版信息

Adv Biosyst. 2018 Apr;2(4). doi: 10.1002/adbi.201700242. Epub 2018 Feb 26.

Abstract

The interface of biological components with semiconductors is a growing field with numerous applications. For example, the interfaces can be used to sense and modulate the electrical activity of single cells and tissues. From the materials point of view, silicon is the ideal option for such studies due to its controlled chemical synthesis, scalable lithography for functional devices, excellent electronic and optical properties, biocompatibility and biodegradability. Recent advances in this area are pushing the bio-interfaces from the tissue and organ level to the single cell and sub-cellular regimes. In this progress report, we will describe some fundamental studies focusing on miniaturizing the bioelectric and biomechanical interfaces. Additionally, many of our highlighted examples involve freestanding silicon-based nanoscale systems, in addition to substrate-bound structures or devices; the former offers new promise for basic research and clinical application. In this report, we will describe recent developments in the interfacing of neuronal and cardiac cells and their networks. Moreover, we will briefly discuss the incorporation of semiconductor nanostructures for interfacing non-excitable cells in applications such as probing intracellular force dynamics and drug delivery. Finally, we will suggest several directions for future exploration.

摘要

生物组件与半导体的界面是一个不断发展的领域,有着众多应用。例如,这些界面可用于感知和调节单细胞及组织的电活动。从材料角度来看,硅是此类研究的理想选择,因为它具有可控的化学合成、适用于功能器件的可扩展光刻技术、优异的电子和光学性能、生物相容性和生物可降解性。该领域的最新进展正将生物界面从组织和器官层面推进到单细胞和亚细胞层面。在本进展报告中,我们将描述一些聚焦于生物电和生物力学界面小型化的基础研究。此外,除了与基底结合的结构或器件外,我们重点介绍的许多例子都涉及独立的硅基纳米级系统;前者为基础研究和临床应用带来了新的希望。在本报告中,我们将描述神经元和心脏细胞及其网络界面的最新进展。此外,我们将简要讨论在诸如探测细胞内力动态和药物递送等应用中,用于连接非兴奋性细胞的半导体纳米结构的纳入情况。最后,我们将提出几个未来探索的方向。

相似文献

1
Talking to cells: semiconductor nanomaterials at the cellular interface.
Adv Biosyst. 2018 Apr;2(4). doi: 10.1002/adbi.201700242. Epub 2018 Feb 26.
2
Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.
Acc Chem Res. 2018 May 15;51(5):1014-1022. doi: 10.1021/acs.accounts.7b00555. Epub 2018 Apr 18.
3
Nanoenabled Bioelectrical Modulation.
Acc Mater Res. 2021 Oct 22;2(10):895-906. doi: 10.1021/accountsmr.1c00132. Epub 2021 Aug 30.
4
Nano-Bioelectronics.
Chem Rev. 2016 Jan 13;116(1):215-57. doi: 10.1021/acs.chemrev.5b00608. Epub 2015 Dec 21.
5
Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering.
Acc Chem Res. 2024 Jun 4;57(11):1633-1647. doi: 10.1021/acs.accounts.4c00163. Epub 2024 May 16.
6
Nano-enabled cellular engineering for bioelectric studies.
Nano Res. 2020 May;13(5):1214-1227. doi: 10.1007/s12274-019-2580-8. Epub 2019 Dec 21.
7
Conjugated Polymers in Bioelectronics.
Acc Chem Res. 2018 Jun 19;51(6):1368-1376. doi: 10.1021/acs.accounts.7b00624. Epub 2018 Jun 6.
8
Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.
Acc Chem Res. 2014 Feb 18;47(2):612-23. doi: 10.1021/ar400221g. Epub 2014 Jan 7.
9
Nanostructured interfaces for probing and facilitating extracellular electron transfer.
J Mater Chem B. 2018 Nov 28;6(44):7144-7158. doi: 10.1039/c8tb01598h. Epub 2018 Jul 23.
10
Nanowired Bioelectric Interfaces.
Chem Rev. 2019 Aug 14;119(15):9136-9152. doi: 10.1021/acs.chemrev.8b00795. Epub 2019 Apr 17.

引用本文的文献

1
Substrate topography affects PC12 cell differentiation through mechanotransduction mechanisms.
Mechanobiol Med. 2024 Jan 24;2(1):100039. doi: 10.1016/j.mbm.2024.100039. eCollection 2024 Mar.
2
Future medicine: from molecular pathways to the collective intelligence of the body.
Trends Mol Med. 2023 Sep;29(9):687-710. doi: 10.1016/j.molmed.2023.06.007. Epub 2023 Jul 20.
3
Semi-Implantable Bioelectronics.
Nanomicro Lett. 2022 May 28;14(1):125. doi: 10.1007/s40820-022-00818-4.
4
Light-Responsive Inorganic Biomaterials for Biomedical Applications.
Adv Sci (Weinh). 2020 Jul 17;7(17):2000863. doi: 10.1002/advs.202000863. eCollection 2020 Sep.
5
On the Interaction between 1D Materials and Living Cells.
J Funct Biomater. 2020 Jun 10;11(2):40. doi: 10.3390/jfb11020040.
6
High-Aspect-Ratio Semiconducting Polymer Pillars for 3D Cell Cultures.
ACS Appl Mater Interfaces. 2019 Aug 7;11(31):28125-28137. doi: 10.1021/acsami.9b08822. Epub 2019 Jul 29.

本文引用的文献

1
Nanoscale silicon for subcellular biointerfaces.
J Mater Chem B. 2017 Jun 21;5(23):4276-4289. doi: 10.1039/c7tb00151g. Epub 2017 Apr 6.
2
Neural Recording and Modulation Technologies.
Nat Rev Mater. 2017 Feb;2(2). doi: 10.1038/natrevmats.2016.93. Epub 2017 Jan 4.
3
Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires.
Nat Nanotechnol. 2018 Mar;13(3):260-266. doi: 10.1038/s41565-017-0041-7. Epub 2018 Feb 19.
5
Fully integrated silicon probes for high-density recording of neural activity.
Nature. 2017 Nov 8;551(7679):232-236. doi: 10.1038/nature24636.
6
Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):E10046-E10055. doi: 10.1073/pnas.1717695114. Epub 2017 Nov 6.
7
Cyborgian Material Design for Solar Fuel Production: The Emerging Photosynthetic Biohybrid Systems.
Acc Chem Res. 2017 Mar 21;50(3):476-481. doi: 10.1021/acs.accounts.6b00483.
8
3D calcite heterostructures for dynamic and deformable mineralized matrices.
Nat Commun. 2017 Sep 11;8(1):509. doi: 10.1038/s41467-017-00560-1.
9
Revealing the Cell-Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy.
ACS Nano. 2017 Aug 22;11(8):8320-8328. doi: 10.1021/acsnano.7b03494. Epub 2017 Jul 21.
10
Nanoscale manipulation of membrane curvature for probing endocytosis in live cells.
Nat Nanotechnol. 2017 Aug;12(8):750-756. doi: 10.1038/nnano.2017.98. Epub 2017 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验