Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States.
The James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States.
Chem Rev. 2019 Aug 14;119(15):9136-9152. doi: 10.1021/acs.chemrev.8b00795. Epub 2019 Apr 17.
Biological systems have evolved biochemical, electrical, mechanical, and genetic networks to perform essential functions across various length and time scales. High-aspect-ratio biological nanowires, such as bacterial pili and neurites, mediate many of the interactions and homeostasis in and between these networks. Synthetic materials designed to mimic the structure of biological nanowires could also incorporate similar functional properties, and exploiting this structure-function relationship has already proved fruitful in designing biointerfaces. Semiconductor nanowires are a particularly promising class of synthetic nanowires for biointerfaces, given (1) their unique optical and electronic properties and (2) their high degree of synthetic control and versatility. These characteristics enable fabrication of a variety of electronic and photonic nanowire devices, allowing for the formation of well-defined, functional bioelectric interfaces at the biomolecular level to the whole-organ level. In this Focus Review, we first discuss the history of bioelectric interfaces with semiconductor nanowires. We next highlight several important, endogenous biological nanowires and use these as a framework to categorize semiconductor nanowire-based biointerfaces. Within this framework we then review the fundamentals of bioelectric interfaces with semiconductor nanowires and comment on both material choice and device design to form biointerfaces spanning multiple length scales. We conclude with a discussion of areas with the potential for greatest impact using semiconductor nanowire-enabled biointerfaces in the future.
生物系统已经进化出生化、电气、机械和遗传网络,以在各种长度和时间尺度上执行基本功能。高纵横比的生物纳米线,如细菌菌毛和神经突,介导了这些网络内部和之间的许多相互作用和动态平衡。旨在模拟生物纳米线结构的合成材料也可以纳入类似的功能特性,并且利用这种结构-功能关系已经在设计生物界面方面取得了丰硕的成果。鉴于(1)其独特的光学和电子特性以及(2)其高度的合成控制和多功能性,半导体纳米线是生物界面特别有前途的一类合成纳米线。这些特性能够制造各种电子和光子纳米线器件,从而在生物分子水平到整个器官水平形成定义明确的功能生物电界面。在这篇重点综述中,我们首先讨论了半导体纳米线生物电界面的历史。接下来,我们重点介绍了几种重要的内源性生物纳米线,并将它们作为一个框架来对基于半导体纳米线的生物界面进行分类。在这个框架内,我们回顾了半导体纳米线生物电界面的基本原理,并评论了材料选择和器件设计,以形成跨越多个长度尺度的生物界面。最后,我们讨论了在未来使用半导体纳米线实现生物界面的最有潜力的领域。