Xu Rui, Xiao Ye, Zhang Rui, Cheng Xin-Bing, Zhao Chen-Zi, Zhang Xue-Qiang, Yan Chong, Zhang Qiang, Huang Jia-Qi
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
Adv Mater. 2019 May;31(19):e1808392. doi: 10.1002/adma.201808392. Epub 2019 Mar 25.
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single-ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long-term working conditions. Herein, a robust dual-phase artificial interface is constructed, where not only the single-ion-conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al-doped Li La Zr Ta O -based bottom layer and a lithiated Nafion top layer. The as-constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li-ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite-free Li deposition behavior in a working battery.
锂(Li)金属阳极面临着严重的界面问题,这极大地阻碍了其实际应用。不稳定的界面直接导致不良的低循环效率、锂枝晶沉积,甚至引发强烈的安全隐患。具有单离子传导通道的先进人工保护层有望在锂金属表面实现空间均匀的离子和电场分布,从而在长期工作条件下很好地保护锂金属阳极。在此,构建了一种坚固的双相人工界面,通过合理整合石榴石型铝掺杂锂镧锆钽氧化物基底层和锂化的全氟磺酸离子交换膜顶层,不仅可以实现单离子传导特性,还能同时具备高机械刚性和相当大的可变形性。所构建的人工固体电解质界面通过调节便捷的锂离子传输和致密的锂沉积行为,显著稳定了电池的反复充放电过程,从而提高了库仑效率,并大大增强了锂金属电池的循环稳定性。这项工作突出了合理调控工作中的锂金属阳极界面性质的重要性,并为在工作电池中实现无枝晶锂沉积行为提供了新的见解。