KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Surface and Corrosion Science , Stockholm , Sweden.
RISE Research Institutes of Sweden , Division Bioscience and Materials , Stockholm , Sweden.
Environ Sci Technol. 2019 Apr 16;53(8):4030-4044. doi: 10.1021/acs.est.8b05012. Epub 2019 Apr 4.
Knowledge on relations between particle properties and dissolution/transformation characteristics of metal and metal oxide nanoparticles (NPs) in freshwater is important for risk assessment and product development. This critical review aims to elucidate nanospecific effects on dissolution of metallic NPs in freshwater and similar media. Dissolution rate constants are compiled and analyzed for NPs of silver (Ag), copper (Cu), copper oxide/hydroxide (CuO, Cu(OH)), zinc oxide (ZnO), manganese (Mn), and aluminum (Al), showing largely varying (orders of magnitude) constants when modeled using first order kinetics. An effect of small primary sizes (<15 nm) was observed, leading to increased dissolution rate constants and solubility in some cases. However, the often extensive particle agglomeration can result in reduced nanospecific effects on dissolution and also an increased uncertainty related to the surface area, a parameter that largely influence the extent of dissolution. Promising ways to model surface areas of NPs in solution using fractal dimensions and size distributions are discussed in addition to nanospecific aspects related to other processes such as corrosion, adsorption of natural organic matter (NOM), presence of capping agents, and existence of surface defects. The importance of the experimental design on the results of dissolution experiments of metal and metal oxide NPs is moreover highlighted, including the influence of ionic metal solubility and choice of particle dispersion methodology.
关于金属和金属氧化物纳米粒子(NPs)在淡水中的颗粒特性与溶解/转化特性之间关系的知识,对于风险评估和产品开发非常重要。本综述旨在阐明纳米特异性对淡水和类似介质中金属 NPs 溶解的影响。本文编译并分析了银(Ag)、铜(Cu)、氧化铜/氢氧化物(CuO、Cu(OH))、氧化锌(ZnO)、锰(Mn)和铝(Al)NPs 的溶解速率常数,当使用一级动力学模型进行模拟时,这些常数的变化范围很大(数量级)。观察到小的初级粒径(<15nm)的影响,导致在某些情况下溶解速率常数和溶解度增加。然而,广泛的颗粒团聚通常会导致溶解的纳米特异性效应降低,并且与表面积相关的不确定性增加,表面积是影响溶解程度的主要参数。除了与其他过程(如腐蚀、天然有机物(NOM)的吸附、封端剂的存在和表面缺陷的存在)相关的纳米特异性方面外,还讨论了使用分形维度和尺寸分布来模拟溶液中 NPs 表面积的有前途的方法。此外,还强调了金属和金属氧化物 NPs 溶解实验的实验设计对结果的重要性,包括金属离子溶解度的影响和颗粒分散方法的选择。