Suppr超能文献

一种用于胃肠道靶向给药胶囊的新型快速求解方法。

A novel fast solving method for targeted drug-delivery capsules in the gastrointestinal tract.

作者信息

Guo Xudong, Zhang Na, Cui Haipo, Wang Jing, Jiang Qinfen

机构信息

School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Jiangsu Apon Medical Technology Co., Ltd, Nantong, Jiangsu 226400, China.

出版信息

Technol Health Care. 2019;27(3):335-341. doi: 10.3233/THC-181484.

Abstract

BACKGROUND

As an innovative technique without cable connection, targeted drug-delivery capsules improve diagnostic and therapeutic capabilities in the gastrointestinal (GI) tract.

OBJECTIVE

To fast track targeted drug-delivery capsules in the GI tract, a tracking method based on the multiple alternating magnetic sources with adaptive adjustment of the excitation intensity has been investigated.

METHODS

The functional prototype of the tracking system has been developed. The tracking model between the magnetic field strength and the capsule's location has been established, which shows a nonlinear equation group with multiple local extremum. Particularly, an improved back-propagation (BP) neural network by particle swarm optimization (PSO) is investigated to solve the tracking problem in real time. The PSO is introduced at an early stage to optimize the weights and thresholds of the BP neural network to improve the generalizability and global search ability. Consequently, the Levenberg-Marquardt (LM) algorithm is used as the learning rule to obtain a higher accuracy and convergence rate.

RESULTS

The performance on the PSO-BP neural network is experimentally analyzed by comparing it with the standard BP network and the LM-BP network.

CONCLUSIONS

The tracking experiments show that the PSO-BP neural network can solve the tracking problem successfully. The PSO-BP network can get the solution faster than iterative search algorithms.

摘要

背景

作为一种无电缆连接的创新技术,靶向给药胶囊提高了胃肠道(GI)的诊断和治疗能力。

目的

为了在胃肠道中快速跟踪靶向给药胶囊,研究了一种基于多个交变磁源并能自适应调整激励强度的跟踪方法。

方法

开发了跟踪系统的功能原型。建立了磁场强度与胶囊位置之间的跟踪模型,该模型显示为一个具有多个局部极值的非线性方程组。特别地,研究了一种通过粒子群优化(PSO)改进的反向传播(BP)神经网络来实时解决跟踪问题。在早期引入PSO以优化BP神经网络的权重和阈值,从而提高泛化能力和全局搜索能力。因此,使用Levenberg-Marquardt(LM)算法作为学习规则以获得更高的精度和收敛速度。

结果

通过将PSO-BP神经网络与标准BP网络和LM-BP网络进行比较,对其性能进行了实验分析。

结论

跟踪实验表明,PSO-BP神经网络能够成功解决跟踪问题。PSO-BP网络比迭代搜索算法能更快地得到解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验