Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Carnegie 568D, 600 N. Wolfe St. Baltimore, MD, USA.
Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, 5000 Bélanger St, Montréal, Canada.
Eur Heart J. 2019 Jun 14;40(23):1850-1858. doi: 10.1093/eurheartj/ehz103.
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients.
Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 ± 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44-9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73-0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92-0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P < 0.001).
Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICDs (www.arvcrisk.com).
致心律失常性右室心肌病(ARVC)的特征为室性心律失常(VA)和心脏性猝死(SCD)。我们旨在为 ARVC 患者发生 VA/SCD 的事件建立个体化预测模型。
本研究纳入了来自北美和欧洲 5 个登记处的 528 例具有明确诊断且基线时无持续性 VA/SCD 病史的患者,年龄为 38.2±15.5 岁,44.7%为男性。在超过 4.83(四分位距 2.44-9.33)年的随访中,146 例(27.7%)发生持续性 VA,定义为 SCD、心源性晕厥后 SCD、持续性室性心动过速或适当的植入式心脏复律除颤器(ICD)治疗。采用 Cox 回归建立了预测模型,并用内部验证来评估其对 VA 风险的预测能力。有 8 个潜在预测因素被预先设定:年龄、性别、6 个月内的心脏性晕厥、非持续性室性心动过速、24 小时内的室性期前收缩总数、T 波倒置导联数、右室射血分数(RVEF)和左室射血分数(LVEF)。除 LVEF 外,所有因素均被保留在最终模型中。该模型能准确区分有和无事件的患者,其校正后的 C 指数为 0.77[95%置信区间(CI)0.73-0.81],且有最小的过度拟合[校准斜率为 0.93(95%CI 0.92-0.95)]。通过决策曲线分析,该模型的临床获益优于当前基于共识的 ICD 放置算法,在保护相同比例患者的情况下,ICD 放置率降低了 20.6%(P<0.001)。
使用 ARVC 最大的患者队列和无既往 VA 的病史,我们设计了一个使用易于获得的临床参数的预测模型,用于估计 VA 风险,并指导有关一级预防 ICD 的决策(www.arvcrisk.com)。