DIMES Department-University of Calabria, via Pietro Bucci cubo 39/c V piano, 87036 Rende (CS), Italy.
Sensors (Basel). 2019 Mar 26;19(6):1469. doi: 10.3390/s19061469.
In the last few years, we witnessed numerous episodes of terrorist attacks and menaces in public crowded places. The necessity of better surveillance in these places pushed the development of new automated solutions to spot and notify possible menaces as fast as possible. In this work, we propose a novel approach to create a decentralized architecture to manage patrolling drones and cameras exploiting lightweight protocols used in the internet of things (IoT) domain. Through the adoption of the mist computing paradigm it is possible to give to all the object of the smart ecosystem a cognitive intelligence to speed up the recognition and analysis tasks. Distributing the intelligence among all the objects of the surveillance ecosystem allows a faster recognition and reaction to possible warning situations. The recognition of unusual objects in certain areas, e.g., airports, train stations and bus stations, has been made using computer vision algorithms. The adoption of the IoT protocols in a hierarchical architecture provides high scalability allowing an easy and painless join of other smart objects. Also a study on the soft real-time feasibility has been conducted and is herein presented.
在过去的几年中,我们目睹了众多发生在公共拥挤场所的恐怖袭击和威胁事件。为了在这些场所进行更好的监控,我们需要开发新的自动化解决方案,以便尽快发现并通知可能存在的威胁。在这项工作中,我们提出了一种创建分散式架构的新方法,以利用物联网 (IoT) 领域中使用的轻量级协议来管理巡逻无人机和摄像头。通过采用雾计算范例,可以为智能生态系统中的所有对象赋予认知智能,以加快识别和分析任务的速度。将智能分布在监控生态系统的所有对象中,可以更快地识别和应对可能的警告情况。使用计算机视觉算法对某些区域(例如机场、火车站和公共汽车站)中不寻常物体的识别。在分层架构中采用 IoT 协议可提供高可扩展性,允许轻松且无痛地加入其他智能对象。还对软实时可行性进行了研究,并在此呈现。