Suppr超能文献

医疗物联网:一种使用深度学习和微调进行肺部 CT 分割的有效全自动 IoT 方法。

Internet of Medical Things: An Effective and Fully Automatic IoT Approach Using Deep Learning and Fine-Tuning to Lung CT Segmentation.

机构信息

Department of Computer Science, Federal Institute of Education, Science and Technology of Ceará, Fortaleza CE 60040-215, Brazil.

Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza CE 60020-181, Brazil.

出版信息

Sensors (Basel). 2020 Nov 24;20(23):6711. doi: 10.3390/s20236711.

Abstract

Several pathologies have a direct impact on society, causing public health problems. Pulmonary diseases such as Chronic obstructive pulmonary disease (COPD) are already the third leading cause of death in the world, leaving tuberculosis at ninth with 1.7 million deaths and over 10.4 million new occurrences. The detection of lung regions in images is a classic medical challenge. Studies show that computational methods contribute significantly to the medical diagnosis of lung pathologies by Computerized Tomography (CT), as well as through Internet of Things (IoT) methods based in the context on the health of things. The present work proposes a new model based on IoT for classification and segmentation of pulmonary CT images, applying the transfer learning technique in deep learning methods combined with Parzen's probability density. The proposed model uses an Application Programming Interface (API) based on the Internet of Medical Things to classify lung images. The approach was very effective, with results above 98% accuracy for classification in pulmonary images. Then the model proceeds to the lung segmentation stage using the Mask R-CNN network to create a pulmonary map and use fine-tuning to find the pulmonary borders on the CT image. The experiment was a success, the proposed method performed better than other works in the literature, reaching high segmentation metrics values such as accuracy of 98.34%. Besides reaching 5.43 s in segmentation time and overcoming other transfer learning models, our methodology stands out among the others because it is fully automatic. The proposed approach has simplified the segmentation process using transfer learning. It has introduced a faster and more effective method for better-performing lung segmentation, making our model fully automatic and robust.

摘要

多种病理学对社会产生直接影响,导致公共卫生问题。肺部疾病,如慢性阻塞性肺疾病(COPD),已经成为世界上的第三大致死原因,结核病则位居第九,导致 170 万人死亡,超过 1040 万人新发病例。图像中肺部区域的检测是一个经典的医学挑战。研究表明,计算方法通过计算机断层扫描(CT)以及基于物联网(IoT)的方法为肺部病理学的计算机诊断做出了重大贡献,这些方法基于物联网的健康背景。本工作提出了一种新的基于物联网的模型,用于分类和分割肺部 CT 图像,将迁移学习技术应用于深度学习方法,并结合 Parzen 的概率密度。所提出的模型使用基于物联网的应用程序编程接口(API)对肺部图像进行分类。该方法非常有效,对肺部图像的分类准确率超过 98%。然后,该模型使用 Mask R-CNN 网络进入肺部分割阶段,创建肺部图谱,并使用微调在 CT 图像上找到肺部边界。实验非常成功,所提出的方法比文献中的其他工作表现更好,达到了 98.34%的高精度等分割指标值。除了在分割时间方面达到 5.43 秒和克服其他迁移学习模型之外,我们的方法在其他方面也很突出,因为它是完全自动的。该方法通过迁移学习简化了分割过程。它引入了一种更快、更有效的方法,实现了更好的肺部分割,使我们的模型完全自动和鲁棒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/694b/7727680/b223f998e37a/sensors-20-06711-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验