Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.
Department of Bioengineering, Rice University, Houston, Texas 77030.
J Biomed Mater Res A. 2019 Aug;107(8):1713-1722. doi: 10.1002/jbm.a.36686. Epub 2019 Apr 9.
Calcium phosphate cements (CPCs) represent excellent bone substitute materials due to their biocompatibility and injectability. However, their poor degradability and lack of macroporosity limits bone regeneration. The addition of poly(d,l-lactic-co-glycolic acid) (PLGA) particles improves macroporosity and therefore late stage material degradation. CPC degradation and hence, bone formation at an early stage remains challenging, due to the delayed onset of PLGA degradation (i.e., after 2-3 weeks). Consequently, we here explored multimodal porogen platforms based on sucrose porogens (for early pore formation) and PLGA porogens (for late pore formation) to enhance CPC degradation and analyzed mechanical properties, dynamic in vitro degradation and in vivo performance in a rat femoral bone defect model. Porogen addition to CPC showed to decrease compressive strength of all CPC formulations; transition of the crystal phase upon in vitro incubation increased compressive strength. Although dynamic in vitro degradation showed rapid sucrose dissolution within 1 week, no additional effects on CPC degradation or bone formation were observed upon in vivo implantation. © 2019 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1713-1722, 2019.
磷酸钙骨水泥 (CPC) 因其生物相容性和可注射性而成为优秀的骨替代材料。然而,其较差的降解性和缺乏大孔结构限制了骨再生。聚(D,L-丙交酯-共-乙交酯)(PLGA)颗粒的添加改善了大孔结构,从而改善了后期材料降解。由于 PLGA 降解的延迟(即 2-3 周后),CPC 的降解和因此早期的骨形成仍然具有挑战性。因此,我们在此探索了基于蔗糖多孔剂(用于早期孔形成)和 PLGA 多孔剂(用于后期孔形成)的多模式造孔剂平台,以增强 CPC 的降解,并分析了机械性能、体外动态降解和体内性能在大鼠股骨骨缺损模型中。多孔剂的添加降低了所有 CPC 配方的抗压强度;体外孵育时晶体相的转变增加了抗压强度。尽管体外动态降解显示蔗糖在 1 周内迅速溶解,但在体内植入时对 CPC 降解或骨形成没有观察到额外的影响。2019 年作者。生物医学材料研究杂志 A 部分由 Wiley 期刊出版公司出版。J Biomed Mater Res Part A: 107A: 1713-1722, 2019.