Suppr超能文献

磷酸钙骨水泥中的多模态孔形成。

Multimodal pore formation in calcium phosphate cements.

机构信息

Department of Biomaterials, Radboudumc, Nijmegen, The Netherlands.

Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

J Biomed Mater Res A. 2018 Feb;106(2):500-509. doi: 10.1002/jbm.a.36245. Epub 2017 Oct 27.

Abstract

Calcium phosphate cements (CPCs) are commonly used as bone substitute materials. However, their slow degradation rate and lack of macroporosity hinders new bone formation. Poly(dl-lactic-co-glycolic acid) (PLGA) incorporation is of great interest as, upon degradation, produces acidic by-products that enhance CPC degradation. Yet, new bone formation is delayed until PLGA degradation occurs a few weeks after implantation. Therefore, the aim of this study was to accelerate the early stage pore formation within CPCs in vitro. With that purpose, we incorporated the water-soluble porogen sucrose at different weight percentages (10 or 20 wt %) to CPC and CPC/PLGA composites. The results revealed that incorporation of sucrose porogens increased mass loss within the first week of in vitro degradation in groups containing sucrose compared to control groups. After week 1, a further mass loss was observed related to PLGA and CPC degradation. Macroporosity analysis confirmed that macroporosity formation is influenced by the dissolution of sucrose at an early stage and by the degradation of PLGA and CPC at a later stage. We concluded that the combination of sucrose and PLGA porogens in CPC is a promising approach to promote early stage bone tissue ingrowth and complete replacement of CPC through multimodal pore formation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 500-509, 2018.

摘要

磷酸钙骨水泥 (CPCs) 通常被用作骨替代材料。然而,其缓慢的降解率和缺乏大孔性阻碍了新骨的形成。聚 (DL-丙交酯-共-乙交酯) (PLGA) 的掺入具有很大的研究兴趣,因为在降解时会产生酸性副产物,从而增强 CPC 的降解。然而,新骨的形成会延迟到植入后几周 PLGA 降解时才发生。因此,本研究的目的是在体外加速 CPC 早期的孔形成。为此,我们将水溶性致孔剂蔗糖以不同的重量百分比(10 或 20wt%)掺入 CPC 和 CPC/PLGA 复合材料中。结果表明,与对照组相比,在含有蔗糖的组中,蔗糖致孔剂的掺入会在体外降解的第一周内增加质量损失。第 1 周后,观察到与 PLGA 和 CPC 降解相关的进一步质量损失。大孔率分析证实,大孔形成受到早期蔗糖溶解以及后期 PLGA 和 CPC 降解的影响。我们得出结论,将蔗糖和 PLGA 致孔剂结合到 CPC 中是一种很有前途的方法,可以通过多模式孔形成促进早期骨组织向内生长和 CPC 的完全替代。© 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 500-509, 2018.

相似文献

1
Multimodal pore formation in calcium phosphate cements.
J Biomed Mater Res A. 2018 Feb;106(2):500-509. doi: 10.1002/jbm.a.36245. Epub 2017 Oct 27.
2
Multimodal porogen platforms for calcium phosphate cement degradation.
J Biomed Mater Res A. 2019 Aug;107(8):1713-1722. doi: 10.1002/jbm.a.36686. Epub 2019 Apr 9.
4
Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering.
Acta Biomater. 2017 Mar 1;50:68-77. doi: 10.1016/j.actbio.2016.12.024. Epub 2016 Dec 10.
5
In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres.
Acta Biomater. 2011 Sep;7(9):3459-68. doi: 10.1016/j.actbio.2011.05.036. Epub 2011 Jun 6.
6
Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles.
Biomaterials. 2011 Dec;32(34):8839-47. doi: 10.1016/j.biomaterials.2011.08.005. Epub 2011 Aug 25.
8
Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration.
Biomed Mater. 2020 Feb 17;15(2):025002. doi: 10.1088/1748-605X/ab5f9c.
9
Toward accelerated bone regeneration by altering poly(D,L-lactic-co-glycolic) acid porogen content in calcium phosphate cement.
J Biomed Mater Res A. 2016 Feb;104(2):483-92. doi: 10.1002/jbm.a.35584. Epub 2015 Oct 29.
10
Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation.
J Biomed Mater Res A. 2013 Aug;101(8):2365-73. doi: 10.1002/jbm.a.34531. Epub 2013 Jan 30.

引用本文的文献

1
Incorporation of synthetic water-soluble curcumin polymeric drug within calcium phosphate cements for bone defect repairing.
Mater Today Bio. 2023 Apr 7;20:100630. doi: 10.1016/j.mtbio.2023.100630. eCollection 2023 Jun.
3
A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy.
Bioeng Transl Med. 2020 Dec 15;6(2):e10206. doi: 10.1002/btm2.10206. eCollection 2021 May.
4
Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing.
Front Bioeng Biotechnol. 2020 Feb 12;8:61. doi: 10.3389/fbioe.2020.00061. eCollection 2020.
5
Porous titanium fiber mesh with tailored elasticity and its effect on stromal cells.
J Biomed Mater Res B Appl Biomater. 2020 Jul;108(5):2180-2191. doi: 10.1002/jbm.b.34556. Epub 2020 Jan 14.
6
Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration.
Biomed Mater. 2020 Feb 17;15(2):025002. doi: 10.1088/1748-605X/ab5f9c.
7
Resorption of the calcium phosphate layer on S53P4 bioactive glass by osteoclasts.
J Mater Sci Mater Med. 2019 Aug 14;30(8):94. doi: 10.1007/s10856-019-6295-x.
8
Multimodal porogen platforms for calcium phosphate cement degradation.
J Biomed Mater Res A. 2019 Aug;107(8):1713-1722. doi: 10.1002/jbm.a.36686. Epub 2019 Apr 9.
9

本文引用的文献

1
Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering.
Acta Biomater. 2017 Mar 1;50:68-77. doi: 10.1016/j.actbio.2016.12.024. Epub 2016 Dec 10.
2
Long-term biological performance of injectable and degradable calcium phosphate cement.
Biomed Mater. 2016 Dec 9;12(1):015009. doi: 10.1088/1748-605X/12/1/015009.
4
Size matters: effects of PLGA-microsphere size in injectable CPC/PLGA on bone formation.
J Tissue Eng Regen Med. 2016 Aug;10(8):669-78. doi: 10.1002/term.1840. Epub 2013 Oct 29.
5
The in vivo performance of CaP/PLGA composites with varied PLGA microsphere sizes and inorganic compositions.
Acta Biomater. 2013 Jul;9(7):7518-26. doi: 10.1016/j.actbio.2013.03.007. Epub 2013 Mar 16.
6
Incorporation of bioactive glass in calcium phosphate cement: An evaluation.
Acta Biomater. 2013 Mar;9(3):5728-39. doi: 10.1016/j.actbio.2012.11.009. Epub 2012 Nov 14.
7
Three different strategies to obtain porous calcium phosphate cements: comparison of performance in a rat skull bone augmentation model.
Tissue Eng Part A. 2012 Jun;18(11-12):1171-82. doi: 10.1089/ten.TEA.2011.0444. Epub 2012 Mar 9.
8
Longitudinal assessment of in vivo bone dynamics in a mouse tail model of postmenopausal osteoporosis.
Calcif Tissue Int. 2012 Feb;90(2):108-19. doi: 10.1007/s00223-011-9553-6. Epub 2011 Dec 9.
9
Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles.
Biomaterials. 2011 Dec;32(34):8839-47. doi: 10.1016/j.biomaterials.2011.08.005. Epub 2011 Aug 25.
10
Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration?
Injury. 2011 Sep;42 Suppl 2:S22-5. doi: 10.1016/j.injury.2011.06.008. Epub 2011 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验