Suppr超能文献

显著区域检测通过显著和非显著字典。

Salient region detection through salient and non-salient dictionaries.

机构信息

School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.

School of Management, Xi'an Jiaotong University, Xi'an, China.

出版信息

PLoS One. 2019 Mar 28;14(3):e0213433. doi: 10.1371/journal.pone.0213433. eCollection 2019.

Abstract

Low-rank representation-based frameworks are becoming popular for the saliency and the object detection because of their easiness and simplicity. These frameworks only need global features to extract the salient objects while the local features are compromised. To deal with this issue, we regularize the low-rank representation through a local graph-regularization and a maximum mean-discrepancy regularization terms. Firstly, we introduce a novel feature space that is extracted by combining the four feature spaces like CIELab, RGB, HOG and LBP. Secondly, we combine a boundary metric, a candidate objectness metric and a candidate distance metric to compute the low-level saliency map. Thirdly, we extract salient and non-salient dictionaries from the low-level saliency. Finally, we regularize the low-rank representation through the Laplacian regularization term that saves the structural and geometrical features and using the mean discrepancy term that reduces the distribution divergence and connections among similar regions. The proposed model is tested against seven latest salient region detection methods using the precision-recall curve, receiver operating characteristics curve, F-measure and mean absolute error. The proposed model remains persistent in all the tests and outperformed against the selected models with higher precision value.

摘要

基于低秩表示的框架因其简单易用而在显著目标检测中变得越来越流行。这些框架只需要全局特征来提取显著目标,而牺牲了局部特征。为了解决这个问题,我们通过局部图正则化和最大均值差异正则化项来正则化低秩表示。首先,我们引入了一个新的特征空间,它是通过结合像 CIELab、RGB、HOG 和 LBP 这样的四个特征空间来提取的。其次,我们结合边界度量、候选对象度量和候选距离度量来计算低水平显著图。然后,我们从低水平显著图中提取显著和非显著字典。最后,我们通过拉普拉斯正则化项来正则化低秩表示,该正则化项保存结构和几何特征,并使用均值差异项来减少分布差异和相似区域之间的连接。我们使用精度-召回曲线、接收者操作特征曲线、F 度量和平均绝对误差对所提出的模型进行了七种最新显著区域检测方法的测试。该模型在所有测试中表现稳定,与选定的模型相比,具有更高的精度值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a059/6438486/c8a59999b6ce/pone.0213433.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验