Suppr超能文献

机械通气的预测性虚拟患者建模:募集功能的影响。

Predictive Virtual Patient Modelling of Mechanical Ventilation: Impact of Recruitment Function.

机构信息

Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.

Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany.

出版信息

Ann Biomed Eng. 2019 Jul;47(7):1626-1641. doi: 10.1007/s10439-019-02253-w. Epub 2019 Mar 29.

Abstract

Mechanical ventilation is a life-support therapy for intensive care patients suffering from respiratory failure. To reduce the current rate of ventilator-induced lung injury requires ventilator settings that are patient-, time-, and disease-specific. A common lung protective strategy is to optimise the level of positive end-expiratory pressure (PEEP) through a recruitment manoeuvre to prevent alveolar collapse at the end of expiration and to improve gas exchange through recruitment of additional alveoli. However, this process can subject parts of the lung to excessively high pressures or volumes. This research significantly extends and more robustly validates a previously developed pulmonary mechanics model to predict lung mechanics throughout recruitment manoeuvres. In particular, the process of recruitment is more thoroughly investigated and the impact of the inclusion of expiratory data when estimating peak inspiratory pressure is assessed. Data from the McREM trial and CURE pilot trial were used to test model predictive capability and assumptions. For PEEP changes of up to and including 14 cmHO, the parabolic model was shown to improve peak inspiratory pressure prediction resulting in less than 10% absolute error in the CURE cohort and 16% in the McREM cohort. The parabolic model also better captured expiratory mechanics than the exponential model for both cohorts.

摘要

机械通气是一种为患有呼吸衰竭的重症监护患者提供生命支持的治疗方法。为了降低呼吸机相关性肺损伤的发生率,需要根据患者、时间和疾病的具体情况来设置呼吸机。一种常见的肺保护策略是通过复张手法来优化呼气末正压(PEEP)水平,以防止呼气末肺泡塌陷,并通过募集更多的肺泡来改善气体交换。然而,这个过程可能会使肺部的某些部位承受过高的压力或容量。这项研究显著扩展和更有力地验证了先前开发的一种肺力学模型,以预测整个复张手法过程中的肺力学。特别是,更彻底地研究了复张过程,并评估了在估计峰吸气压时纳入呼气数据的影响。使用 McREM 试验和 CURE 试验的数据来测试模型的预测能力和假设。对于高达 14cmH2O 及以下的 PEEP 变化,抛物线模型被证明可以改善峰吸气压的预测,使得 CURE 队列的绝对误差小于 10%,McREM 队列的绝对误差小于 16%。对于两个队列,抛物线模型也比指数模型更好地捕获了呼气力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验