Suppr超能文献

一种用于机械通气期间肺力学自动预测的非线性滞后模型。

A Nonlinear Hysteretic Model for Automated Prediction of Lung Mechanics during Mechanical Ventilation.

作者信息

Zhou Cong, Chase J Geoffrey, Sun Qianhui, Knopp Jennifer

机构信息

School of Civil Aviation, Northwestern Polytechnical University, China.

Department of Mechanical Engineering; Dept of Mechanical Eng, Centre for Bio-Engineering, University of Canterbury Christchurch, New Zealand.

出版信息

IFAC Pap OnLine. 2020;53(5):817-822. doi: 10.1016/j.ifacol.2021.04.177. Epub 2021 May 26.

Abstract

Mechanical ventilation (MV) is core intensive care unit (ICU) therapy during the Covid-19 pandemic. Optimising MV care to a specific patient with respiratory failure is difficult due to inter- and intra- patient variability in lung mechanics and condition. The ability to accurately predict patient-specific lung response to a change in MV settings would enable semi-automated care and significantly improve the efficiency of MV monitoring and care. It has particular emphasis when considering MV care required to treat Covid-19 patients, who require longer MV care, where patient-specific care can reduce the time on MV required. This study develops a nonlinear smooth hysteresis loop model (HLM) able to capture the essential lung dynamics in a patient-specific fashion from measured ventilator data, particularly for changes of compliance and infection points of the pressure-volume loop. The automated (no human input) hysteresis loop analysis (HLA) method is applied to identify HLM model parameters, enabling automated digital cloning to create a virtual patient model to accurately predict lung response at a specified positive end expiratory pressure (PEEP) level, as well as in response to the changes of PEEP. The performance of this automated digital cloning approach is assessed using clinical data from 4 patients and 8 recruitment maneuver (RM) arms. Validation results show the HLM-based hysteresis loops identified using HLA match clinical pressure-volume loops very well with root-mean-square (RMS) errors less than 2% for all 8 data sets over 4 patients, validating the accuracy of the developed HLM in capturing the essential lung physiology and respiratory behaviours at different patient conditions. More importantly, the patient-specific digital clones at lower PEEP levels accurately predict lung response at higher PEEP levels with predicted peak inspiratory pressure (PIP) errors less than 2% in average. In addition, the resulted additional lung volume obtained with PEEP changes are predicted with average absolute difference of 0.025L. The overall results validate the versatility and potential of the developed HLM for delineating changes of nonlinear lung dynamics, and its capability to create a predictive virtual patient with use of HLA for future treatment personalization and optimisation in MV therapy.

摘要

在新冠疫情期间,机械通气(MV)是重症监护病房(ICU)的核心治疗手段。由于患者之间以及患者自身肺部力学和病情存在差异,针对特定呼吸衰竭患者优化机械通气护理具有难度。准确预测患者肺部对机械通气设置变化的特异性反应,将有助于实现半自动护理,并显著提高机械通气监测和护理的效率。在考虑为新冠患者提供所需的机械通气护理时,这一点尤为重要,因为新冠患者需要更长时间的机械通气护理,如果能提供个性化护理,则可以减少所需的机械通气时间。本研究开发了一种非线性平滑滞后环模型(HLM),该模型能够根据测量的呼吸机数据以患者特异性方式捕捉基本的肺部动态,特别是压力 - 容积环的顺应性和感染点变化。应用自动(无需人工输入)滞后环分析(HLA)方法来识别HLM模型参数,从而实现自动数字克隆,创建虚拟患者模型,以准确预测在指定呼气末正压(PEEP)水平下以及PEEP变化时的肺部反应。使用来自4名患者和8个招募操作(RM)组的临床数据评估这种自动数字克隆方法的性能。验证结果表明,使用HLA识别的基于HLM的滞后环与临床压力 - 容积环匹配良好,4名患者的所有8个数据集的均方根(RMS)误差均小于2%,验证了所开发的HLM在捕捉不同患者状况下基本肺部生理和呼吸行为方面的准确性。更重要的是,较低PEEP水平下的患者特异性数字克隆能够准确预测较高PEEP水平下的肺部反应,预测的吸气峰压(PIP)误差平均小于2%。此外,预测PEEP变化时产生的额外肺容积的平均绝对差值为0.025L。总体结果验证了所开发的HLM在描绘非线性肺部动态变化方面的通用性和潜力,以及其利用HLA创建预测性虚拟患者以用于未来机械通气治疗个性化和优化的能力。

相似文献

1
A Nonlinear Hysteretic Model for Automated Prediction of Lung Mechanics during Mechanical Ventilation.
IFAC Pap OnLine. 2020;53(5):817-822. doi: 10.1016/j.ifacol.2021.04.177. Epub 2021 May 26.
2
Virtual patients for mechanical ventilation in the intensive care unit.
Comput Methods Programs Biomed. 2021 Feb;199:105912. doi: 10.1016/j.cmpb.2020.105912. Epub 2020 Dec 22.
3
Over-distension prediction via hysteresis loop analysis and patient-specific basis functions in a virtual patient model.
Comput Biol Med. 2022 Feb;141:105022. doi: 10.1016/j.compbiomed.2021.105022. Epub 2021 Nov 11.
4
Pulmonary response prediction through personalized basis functions in a virtual patient model.
Comput Methods Programs Biomed. 2024 Feb;244:107988. doi: 10.1016/j.cmpb.2023.107988. Epub 2023 Dec 19.
5
Reconstructing asynchrony for mechanical ventilation using a hysteresis loop virtual patient model.
Biomed Eng Online. 2022 Mar 7;21(1):16. doi: 10.1186/s12938-022-00986-9.
6
Prediction of lung mechanics throughout recruitment maneuvers in pressure-controlled ventilation.
Comput Methods Programs Biomed. 2020 Dec;197:105696. doi: 10.1016/j.cmpb.2020.105696. Epub 2020 Aug 5.
7
A virtual patient model for mechanical ventilation.
Comput Methods Programs Biomed. 2018 Oct;165:77-87. doi: 10.1016/j.cmpb.2018.08.004. Epub 2018 Aug 10.
8
Automated evaluation of typical patient-ventilator asynchronies based on lung hysteretic responses.
Biomed Eng Online. 2023 Oct 24;22(1):102. doi: 10.1186/s12938-023-01165-0.
10
Positive end-expiratory pressure improves elastic working pressure in anesthetized children.
BMC Anesthesiol. 2018 Oct 24;18(1):151. doi: 10.1186/s12871-018-0611-8.

引用本文的文献

1
Automated evaluation of typical patient-ventilator asynchronies based on lung hysteretic responses.
Biomed Eng Online. 2023 Oct 24;22(1):102. doi: 10.1186/s12938-023-01165-0.

本文引用的文献

2
Predictive Virtual Patient Modelling of Mechanical Ventilation: Impact of Recruitment Function.
Ann Biomed Eng. 2019 Jul;47(7):1626-1641. doi: 10.1007/s10439-019-02253-w. Epub 2019 Mar 29.
3
Biomedical engineer's guide to the clinical aspects of intensive care mechanical ventilation.
Biomed Eng Online. 2018 Nov 12;17(1):169. doi: 10.1186/s12938-018-0599-9.
4
A virtual patient model for mechanical ventilation.
Comput Methods Programs Biomed. 2018 Oct;165:77-87. doi: 10.1016/j.cmpb.2018.08.004. Epub 2018 Aug 10.
5
Extrapolation of a non-linear autoregressive model of pulmonary mechanics.
Math Biosci. 2017 Feb;284:32-39. doi: 10.1016/j.mbs.2016.08.001. Epub 2016 Aug 8.
6
Assessing respiratory mechanics using pressure reconstruction method in mechanically ventilated spontaneous breathing patient.
Comput Methods Programs Biomed. 2016 Jul;130:175-85. doi: 10.1016/j.cmpb.2016.03.025. Epub 2016 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验