Suppr超能文献

甲萘醌-(2-甲基-1,4-萘醌-)依赖的线粒体酶促氧化还原循环及钙释放

Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.

作者信息

Frei B, Winterhalter K H, Richter C

出版信息

Biochemistry. 1986 Jul 29;25(15):4438-43. doi: 10.1021/bi00363a040.

Abstract

The results presented in this paper reveal the existence of three distinct menadione (2-methyl-1,4-naphthoquinone) reductases in mitochondria: NAD(P)H:(quinone-acceptor) oxidoreductase (D,T-diaphorase), NADPH:(quinone-acceptor) oxidoreductase, and NADH:(quinone-acceptor) oxidoreductase. All three enzymes reduce menadione in a two-electron step directly to the hydroquinone form. NADH-ubiquinone oxidoreductase (NADH dehydrogenase) and NAD(P)H azoreductase do not participate significantly in menadione reduction. In mitochondrial extracts, the menadione-induced NAD(P)H oxidation occurs beyond stoichiometric reduction of the quinone and is accompanied by O2 consumption. Benzoquinone is reduced more rapidly than menadione but does not undergo redox cycling. In intact mitochondria, menadione triggers oxidation of intramitochondrial pyridine nucleotides, cyanide-insensitive O2 consumption, and a transient decrease of delta psi. In the presence of intramitochondrial Ca2+, the menadione-induced oxidation of pyridine nucleotides is accompanied by their hydrolysis, and Ca2+ is released from mitochondria. The menadione-induced Ca2+ release leaves mitochondria intact, provided excessive Ca2+ cycling is prevented. In both selenium-deficient and selenium-adequate mitochondria, menadione is equally effective in inducing oxidation of pyridine nucleotides and Ca2+ release. Thus, menadione-induced Ca2+ release is mediated predominantly by enzymatic two-electron reduction of menadione, and not by H2O2 generated by menadione-dependent redox cycling. Our findings argue against D,T-diaphorase being a control device that prevents quinone-dependent oxygen toxicity in mitochondria.

摘要

本文呈现的结果揭示了线粒体中存在三种不同的甲萘醌(2-甲基-1,4-萘醌)还原酶:NAD(P)H:(醌-受体)氧化还原酶(D,T-黄递酶)、NADPH:(醌-受体)氧化还原酶和NADH:(醌-受体)氧化还原酶。这三种酶均通过双电子步骤将甲萘醌直接还原为氢醌形式。NADH-泛醌氧化还原酶(NADH脱氢酶)和NAD(P)H偶氮还原酶在甲萘醌还原过程中不起显著作用。在线粒体提取物中,甲萘醌诱导的NAD(P)H氧化发生在醌的化学计量还原之后,并伴有氧气消耗。苯醌比甲萘醌还原得更快,但不会发生氧化还原循环。在完整的线粒体中,甲萘醌引发线粒体内吡啶核苷酸的氧化、氰化物不敏感的氧气消耗以及线粒体膜电位的短暂下降。在存在线粒体内Ca2+的情况下,甲萘醌诱导的吡啶核苷酸氧化伴随着它们的水解,并且Ca2+从线粒体中释放出来。只要防止过量的Ca2+循环,甲萘醌诱导的Ca2+释放可使线粒体保持完整。在缺硒和富硒的线粒体中,甲萘醌在诱导吡啶核苷酸氧化和Ca2+释放方面同样有效。因此,甲萘醌诱导的Ca2+释放主要是由甲萘醌的酶促双电子还原介导的,而不是由甲萘醌依赖性氧化还原循环产生的H2O2介导的。我们的研究结果反对将D,T-黄递酶作为一种防止线粒体中醌依赖性氧毒性的控制机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验