Suppr超能文献

痕量,痕量灵敏质谱信号图像的机器学习:单细胞代谢组学案例研究。

Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics.

机构信息

Department of Physics , The George Washington University , Washington , D.C. 20052 , United States.

Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States.

出版信息

Anal Chem. 2019 May 7;91(9):5768-5776. doi: 10.1021/acs.analchem.8b05985. Epub 2019 Apr 15.

Abstract

Recent developments in high-resolution mass spectrometry (HRMS) technology enabled ultrasensitive detection of proteins, peptides, and metabolites in limited amounts of samples, even single cells. However, extraction of trace-abundance signals from complex data sets ( m/ z value, separation time, signal abundance) that result from ultrasensitive studies requires improved data processing algorithms. To bridge this gap, we here developed "Trace", a software framework that incorporates machine learning (ML) to automate feature selection and optimization for the extraction of trace-level signals from HRMS data. The method was validated using primary (raw) and manually curated data sets from single-cell metabolomic studies of the South African clawed frog ( Xenopus laevis) embryo using capillary electrophoresis electrospray ionization HRMS. We demonstrated that Trace combines sensitivity, accuracy, and robustness with high data processing throughput to recognize signals, including those previously identified as metabolites in single-cell capillary electrophoresis HRMS measurements that we conducted over several months. These performance metrics combined with a compatibility with MS data in open-source (mzML) format make Trace an attractive software resource to facilitate data analysis for studies employing ultrasensitive high-resolution MS.

摘要

近年来,高分辨率质谱(HRMS)技术的发展使得能够在有限的样品量(甚至单个细胞)中超灵敏地检测蛋白质、肽和代谢物。然而,从超灵敏研究产生的复杂数据集(m/z 值、分离时间、信号丰度)中提取痕量信号需要改进的数据处理算法。为了弥补这一差距,我们在这里开发了“Trace”,这是一个软件框架,它结合了机器学习(ML),以实现从 HRMS 数据中提取痕量信号的特征选择和优化自动化。该方法使用毛细管电泳电喷雾电离 HRMS 对南非爪蟾(Xenopus laevis)胚胎单细胞代谢组学研究的原始和手动整理数据集进行了验证。我们证明了 Trace 具有灵敏度、准确性和稳健性,并且具有较高的数据处理吞吐量,能够识别信号,包括我们在几个月内进行的单细胞毛细管电泳 HRMS 测量中先前被确定为代谢物的信号。这些性能指标与开源(mzML)格式的 MS 数据的兼容性使得 Trace 成为一个有吸引力的软件资源,可促进使用超灵敏高分辨率 MS 的研究中的数据分析。

相似文献

引用本文的文献

4
Autonomous CE Mass-Spectra Examination for the Ocean Worlds Life Surveyor.用于海洋世界生命探测仪的自主彗星质谱检查
Earth Space Sci. 2022 Oct;9(10):e2022EA002247. doi: 10.1029/2022EA002247. Epub 2022 Oct 18.
10
Challenging Bioanalyses with Capillary Electrophoresis.毛细管电泳在具有挑战性的生物分析中的应用
Anal Chem. 2020 Jan 7;92(1):49-66. doi: 10.1021/acs.analchem.9b04718. Epub 2019 Dec 2.

本文引用的文献

4
Single-Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity.单细胞质谱分析方法探索细胞异质性。
Angew Chem Int Ed Engl. 2018 Apr 16;57(17):4466-4477. doi: 10.1002/anie.201709719. Epub 2018 Mar 13.
9
Single-cell analysis at the threshold.阈值下的单细胞分析。
Nat Biotechnol. 2016 Nov 8;34(11):1111-1118. doi: 10.1038/nbt.3721.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验