Wang Ziying, Chu Leiqiang, Li Linjun, Yang Ming, Wang Junyong, Eda Goki, Loh Kian Ping
Department of Chemistry , National University of Singapore , Singapore 117543.
Centre for Advanced 2D Materials , National University of Singapore, Singapore 117546.
Nano Lett. 2019 May 8;19(5):2840-2849. doi: 10.1021/acs.nanolett.8b04805. Epub 2019 Apr 5.
Controllability of collective electron states has been a long-sought scientific and technological goal and promises development of new devices. Herein, we investigate the tuning of charge density wave (CDW) in 1T-TaS via a two-dimensional (2D) van der Waals heterostructure of 1T-TaS/BP. Unusual gate-dependent conductance oscillations were observed in 1T-TaS nanoflake supported on BP in transport measurements. Scanning tunneling microscopy study shows that the nearly commensurate (NC) CDW phase survived to 4.5 K in this system, which is substantially lower than the NC to commensurate CDW phase transition temperature of 180 K. A Coulomb blockade model was invoked to explain the conductance oscillations, where the domain walls and domains in NC phase serve as series of quantum dot arrays and tunnelling barriers, respectively. Density functional theory calculations show that a range of interfacial interactions, including strain and charge transfer, influences the CDW stabilities. Our work sheds light on tuning CDW orders via 2D heterostructure stacking and provides new insights on the CDW phase transition and sliding mechanism.
集体电子态的可控性一直是人们长期追求的科技目标,并有望推动新器件的发展。在此,我们通过1T-TaS/BP二维范德华异质结构研究了1T-TaS中电荷密度波(CDW)的调控。在输运测量中,在BP支撑的1T-TaS纳米片中观察到了异常的栅极依赖电导振荡。扫描隧道显微镜研究表明,在该系统中,近公度(NC)CDW相在4.5 K时仍存在,这远低于180 K的NC到公度CDW相变温度。我们引入了一个库仑阻塞模型来解释电导振荡,其中NC相中的畴壁和畴分别充当一系列量子点阵列和隧穿势垒。密度泛函理论计算表明,包括应变和电荷转移在内的一系列界面相互作用会影响CDW的稳定性。我们的工作揭示了通过二维异质结构堆叠来调控CDW序的方法,并为CDW相变和滑动机制提供了新的见解。