Suppr超能文献

基于1T-TaS/石墨烯的范德华异质结构的面外输运

Out-of-Plane Transport of 1T-TaS/Graphene-Based van der Waals Heterostructures.

作者信息

Boix-Constant Carla, Mañas-Valero Samuel, Córdoba Rosa, Baldoví José J, Rubio Ángel, Coronado Eugenio

机构信息

Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez n 2, Paterna 46980, Spain.

Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761, Hamburg, Germany.

出版信息

ACS Nano. 2021 Jul 27;15(7):11898-11907. doi: 10.1021/acsnano.1c03012. Epub 2021 Jul 6.

Abstract

Due to their anisotropy, layered materials are excellent candidates for studying the interplay between the in-plane and out-of-plane entanglement in strongly correlated systems. A relevant example is provided by 1T-TaS, which exhibits a multifaceted electronic and magnetic scenario due to the existence of several charge density wave (CDW) configurations. It includes quantum hidden phases, superconductivity and exotic quantum spin liquid (QSL) states, which are highly dependent on the out-of-plane stacking of the CDW. In this system, the interlayer stacking of the CDW is crucial for interpreting the underlying electronic and magnetic phase diagram. Here, atomically thin-layers of 1T-TaS are integrated in vertical van der Waals heterostructures based on few-layers graphene contacts and their electrical transport properties are measured. Different activation energies in the conductance and a gap at the Fermi level are clearly observed. Our experimental findings are supported by fully self-consistent DFT+U calculations, which evidence the presence of an energy gap in the few-layer limit, not necessarily coming from the formation of out-of-plane spin-paired bilayers at low temperatures, as previously proposed for the bulk. These results highlight dimensionality as a key effect for understanding quantum materials as 1T-TaS, enabling the possible experimental realization of low-dimensional QSLs.

摘要

由于其各向异性,层状材料是研究强关联系统中面内和面外纠缠相互作用的理想候选材料。一个相关的例子是1T-TaS,由于存在几种电荷密度波(CDW)构型,它展现出多方面的电子和磁学情景。它包括量子隐藏相、超导性和奇异量子自旋液体(QSL)态,这些都高度依赖于CDW的面外堆叠。在这个系统中,CDW的层间堆叠对于解释潜在的电子和磁相图至关重要。在此,基于几层石墨烯接触,将原子级薄的1T-TaS层集成到垂直范德华异质结构中,并测量其电输运性质。在电导率中清晰观察到不同的激活能以及费米能级处的能隙。我们的实验结果得到了完全自洽的DFT+U计算的支持,该计算证明在少层极限情况下存在能隙,这不一定如之前针对体材料所提出的那样,是低温下由面外自旋配对双层的形成导致的。这些结果突出了维度作为理解像1T-TaS这样的量子材料的关键效应,使得低维QSLs的实验实现成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8c4/8454993/1453d9d9cd31/nn1c03012_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验