用于计算蛋白质组学的 Perseus 软件的网络模块促进蛋白质组相互作用图分析。

A Network Module for the Perseus Software for Computational Proteomics Facilitates Proteome Interaction Graph Analysis.

机构信息

Computational Systems Biochemistry , Max-Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany.

Department of Biological and Medical Psychology , University of Bergen , Jonas Liesvei 91 , 5009 Bergen , Norway.

出版信息

J Proteome Res. 2019 May 3;18(5):2052-2064. doi: 10.1021/acs.jproteome.8b00927. Epub 2019 Apr 10.

Abstract

Proteomics data analysis strongly benefits from not studying single proteins in isolation but taking their multivariate interdependence into account. We introduce PerseusNet, the new Perseus network module for the biological analysis of proteomics data. Proteomics is commonly used to generate networks, e.g., with affinity purification experiments, but networks are also used to explore proteomics data. PerseusNet supports the biomedical researcher for both modes of data analysis with a multitude of activities. For affinity purification, a volcano-plot-based statistical analysis method for network generation is featured which is scalable to large numbers of baits. For posttranslational modifications of proteins, such as phosphorylation, a collection of dedicated network analysis tools helps in elucidating cellular signaling events. Co-expression network analysis of proteomics data adopts established tools from transcriptome co-expression analysis. PerseusNet is extensible through a plugin architecture in a multi-lingual way, integrating analyses in C#, Python, and R, and is freely available at http://www.perseus-framework.org .

摘要

蛋白质组学数据分析从多个变量的相互依赖关系出发,而不是孤立地研究单个蛋白质,这将带来巨大的好处。我们引入了 PerseusNet,这是 Perseus 软件中用于蛋白质组学数据分析的新网络模块。蛋白质组学常用于生成网络,例如亲和纯化实验,但网络也用于探索蛋白质组学数据。PerseusNet 通过多种活动为生物医学研究人员提供了这两种数据分析模式的支持。对于亲和纯化,PerseusNet 具有基于火山图的统计分析方法来生成网络,该方法可扩展到大量诱饵。对于蛋白质的翻译后修饰,如磷酸化,一组专用的网络分析工具可帮助阐明细胞信号事件。蛋白质组学数据的共表达网络分析采用转录组共表达分析中已有的工具。PerseusNet 通过多语言的插件架构进行扩展,集成了 C#、Python 和 R 中的分析,并可在 http://www.perseus-framework.org 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4565/6578358/5a154a4bb33e/pr-2018-00927m_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索