Zufferey Valentin, Barve Aatmika, Parietti Enea, Belinga Luc, Bringaud Audrey, Varisco Yvan, Fabbri Kerstin, Capotosti Francesca, Bezzi Paola, Déglon Nicole, Marquet Pierre, Preitner Nicolas, Richetin Kevin
Centre for Psychiatric Neurosciences (CNP), Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1015, Lausanne, Switzerland.
Leenaards Memory Centre, Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1011, Lausanne, Switzerland.
Transl Neurodegener. 2025 Mar 24;14(1):13. doi: 10.1186/s40035-025-00474-9.
Tau is an intracellular protein that plays a crucial role in stabilizing microtubules. However, it can aggregate into various forms under pathological conditions and be secreted into the brain parenchyma. While the consequences of tau aggregation within neurons have been extensively studied, the effects of extracellular paired helical filaments of tau (ePHF-tau) on neurons and astrocytes are still poorly understood.
This study examined the effect of human ePHF-tau (2N4R) on primary cultures of rat neuroglia, focusing on changes in neurites or synapses by microscopy and analysis of synaptosome and mitochondria proteomic profiles after treatment. In addition, we monitored the behavior of mitochondria in neurons and astrocytes separately over three days using high-speed imaging and high-throughput acquisition and analysis.
ePHF-tau was efficiently cleared by astrocytes within two days in a 3D neuron-astrocyte co-culture model. Treatment with ePHF-tau led to a rapid increase in synaptic vesicle production and active zones, suggesting a potential excitotoxic response. Proteomic analyses of synaptosomal and mitochondrial fractions revealed distinct mitochondrial stress adaptations: astrocytes exhibited elevated mitochondrial biogenesis and turnover, whereas neuronal mitochondria displayed only minor oxidative modifications. In a mixed culture model, overexpression of tau 1N4R specifically in astrocytes triggered a marked increase in mitochondrial biogenesis, coinciding with enhanced synaptic vesicle formation in dendrites. Similarly, astrocyte-specific overexpression of PGC1alpha produced a comparable pattern of synaptic vesicle production, indicating that astrocytic mitochondrial adaptation to ePHF-tau may significantly influence synaptic function.
These findings suggest that the accumulation of PHF-tau within astrocytes drives changes in mitochondrial biogenesis, which may influence synaptic regulation. This astrocyte-mediated adaptation to tauopathy highlights the potential role of astrocytes in modulating synaptic dynamics in response to tau stress, opening avenues for therapeutic strategies aimed at astrocytic mechanisms in the context of neurodegenerative diseases.
tau是一种细胞内蛋白,在稳定微管中起关键作用。然而,在病理条件下它可聚集成多种形式并分泌到脑实质中。虽然tau在神经元内聚集的后果已得到广泛研究,但细胞外tau配对螺旋丝(ePHF-tau)对神经元和星形胶质细胞的影响仍知之甚少。
本研究检测了人ePHF-tau(2N4R)对大鼠神经胶质原代培养物的影响,通过显微镜观察神经突或突触的变化,并在处理后分析突触体和线粒体蛋白质组图谱。此外,我们使用高速成像以及高通量采集和分析,在三天内分别监测了神经元和星形胶质细胞中线粒体的行为。
在三维神经元-星形胶质细胞共培养模型中,ePHF-tau在两天内被星形胶质细胞有效清除。用ePHF-tau处理导致突触小泡产生和活性区迅速增加,提示可能存在兴奋性毒性反应。对突触体和线粒体部分的蛋白质组分析揭示了不同的线粒体应激适应:星形胶质细胞表现出线粒体生物发生和更新增加,而神经元线粒体仅显示出轻微的氧化修饰。在混合培养模型中,仅在星形胶质细胞中特异性过表达tau 1N4R会引发线粒体生物发生显著增加,同时树突中突触小泡形成增强。同样,星形胶质细胞特异性过表达PGC1α产生了类似的突触小泡产生模式,表明星形胶质细胞线粒体对ePHF-tau的适应可能显著影响突触功能。
这些发现表明,PHF-tau在星形胶质细胞内的积累驱动线粒体生物发生的变化,这可能影响突触调节。这种星形胶质细胞介导的对tau病变的适应突出了星形胶质细胞在响应tau应激时调节突触动力学中的潜在作用,为针对神经退行性疾病背景下星形胶质细胞机制的治疗策略开辟了途径。