Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, 32611, USA.
Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA, 70112, USA.
Sci Rep. 2019 Apr 1;9(1):5458. doi: 10.1038/s41598-019-41845-3.
An admixed population and its ancestral populations bear different burdens of a complex disease. The ancestral populations may have different haplotypes of deleterious alleles and thus ancestry-gene interaction can influence disease risk in the admixed population. Among admixed individuals, deleterious haplotypes and their ancestries are dependent and can provide non-redundant association information. Herein we propose a local ancestry boosted sum test (LABST) for identifying chromosomal blocks that harbor rare variants but have no ancestry switches. For such a stable ancestral block, our LABST exploits ancestry-gene interaction and the number of rare alleles therein. Under the null of no genetic association, the test statistic asymptotically follows a chi-square distribution with one degree of freedom (1-df). Our LABST properly controlled type I error rates under extensive simulations, suggesting that the asymptotic approximation was accurate for the null distribution of the test statistic. In terms of power for identifying rare variant associations, our LABST uniformly outperformed several famed methods under four important modes of disease genetics over a large range of relative risks. In conclusion, exploiting ancestry-gene interaction can boost statistical power for rare variant association mapping in admixed populations.
混合人群及其祖先人群承担着复杂疾病的不同负担。祖先人群可能具有不同的有害等位基因单倍型,因此,基因与祖先的相互作用可以影响混合人群的疾病风险。在混合个体中,有害单倍型及其祖先相互依赖,可以提供非冗余的关联信息。在此,我们提出了一种局部祖先增强和检验(LABST),用于识别含有罕见变异但没有祖先转换的染色体块。对于这种稳定的祖先块,我们的 LABST 利用了基因与祖先的相互作用以及其中的稀有等位基因的数量。在没有遗传关联的零假设下,检验统计量渐近遵循自由度为 1 的卡方分布(1-df)。我们的 LABST 在广泛的模拟中适当控制了Ⅰ类错误率,表明检验统计量的渐近逼近对于零假设分布是准确的。在识别罕见变异关联的功效方面,我们的 LABST 在四种重要的疾病遗传模式下,在相对风险的较大范围内,均匀地优于几种著名的方法。总之,利用基因与祖先的相互作用可以提高混合人群中罕见变异关联映射的统计功效。