Suppr超能文献

使用深度神经网络预测离子淌度碰撞截面:DeepCCS。

Predicting Ion Mobility Collision Cross-Sections Using a Deep Neural Network: DeepCCS.

机构信息

Big Data Research Centre , Université Laval , Québec City G1 V 0A6 , Canada.

Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires , Centre de Recherche du CHU de Québec-Université Laval , Québec City G1 V 4G2 , Canada.

出版信息

Anal Chem. 2019 Apr 16;91(8):5191-5199. doi: 10.1021/acs.analchem.8b05821. Epub 2019 Apr 1.

Abstract

Untargeted metabolomic measurements using mass spectrometry are a powerful tool for uncovering new small molecules with environmental and biological importance. The small molecule identification step, however, still remains an enormous challenge due to fragmentation difficulties or unspecific fragment ion information. Current methods to address this challenge are often dependent on databases or require the use of nuclear magnetic resonance (NMR), which have their own difficulties. The use of the gas-phase collision cross section (CCS) values obtained from ion mobility spectrometry (IMS) measurements were recently demonstrated to reduce the number of false positive metabolite identifications. While promising, the amount of empirical CCS information currently available is limited, thus predictive CCS methods need to be developed. In this article, we expand upon current experimental IMS capabilities by predicting the CCS values using a deep learning algorithm. We successfully developed and trained a prediction model for CCS values requiring only information about a compound's SMILES notation and ion type. The use of data from five different laboratories using different instruments allowed the algorithm to be trained and tested on more than 2400 molecules. The resulting CCS predictions were found to achieve a coefficient of determination of 0.97 and median relative error of 2.7% for a wide range of molecules. Furthermore, the method requires only a small amount of processing power to predict CCS values. Considering the performance, time, and resources necessary, as well as its applicability to a variety of molecules, this model was able to outperform all currently available CCS prediction algorithms.

摘要

使用质谱进行非靶向代谢组学测量是揭示具有环境和生物学重要性的新小分子的有力工具。然而,小分子鉴定步骤仍然是一个巨大的挑战,因为碎片困难或特异性碎片离子信息。当前解决此挑战的方法通常依赖于数据库或需要使用核磁共振(NMR),这两者都有自己的困难。最近证明,使用离子淌度谱(IMS)测量获得的气相碰撞截面(CCS)值可减少假阳性代谢物鉴定的数量。虽然很有前途,但目前可用的经验 CCS 信息的数量是有限的,因此需要开发预测 CCS 方法。在本文中,我们通过使用深度学习算法来预测 CCS 值来扩展当前的实验 IMS 能力。我们成功地开发并训练了一个仅需要化合物 SMILES 符号和离子类型信息的 CCS 值预测模型。使用来自五个不同实验室使用不同仪器的数据,该算法可以在超过 2400 种分子上进行训练和测试。结果表明,CCS 预测的决定系数达到 0.97,中位数相对误差为 2.7%,适用于广泛的分子。此外,该方法仅需要少量的处理能力来预测 CCS 值。考虑到性能、时间和所需资源,以及其对各种分子的适用性,该模型能够胜过所有当前可用的 CCS 预测算法。

相似文献

1
Predicting Ion Mobility Collision Cross-Sections Using a Deep Neural Network: DeepCCS.
Anal Chem. 2019 Apr 16;91(8):5191-5199. doi: 10.1021/acs.analchem.8b05821. Epub 2019 Apr 1.
2
Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry.
Anal Chem. 2016 Nov 15;88(22):11084-11091. doi: 10.1021/acs.analchem.6b03091. Epub 2016 Nov 1.
4
Collision Cross Section Prediction with Molecular Fingerprint Using Machine Learning.
Molecules. 2022 Sep 29;27(19):6424. doi: 10.3390/molecules27196424.
5
CCS Predictor 2.0: An Open-Source Jupyter Notebook Tool for Filtering Out False Positives in Metabolomics.
Anal Chem. 2022 Dec 20;94(50):17456-17466. doi: 10.1021/acs.analchem.2c03491. Epub 2022 Dec 6.
6
Breaking Down Structural Diversity for Comprehensive Prediction of Ion-Neutral Collision Cross Sections.
Anal Chem. 2020 Mar 17;92(6):4548-4557. doi: 10.1021/acs.analchem.9b05772. Epub 2020 Mar 6.
7
A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry.
Anal Chim Acta. 2022 Sep 15;1226:340236. doi: 10.1016/j.aca.2022.340236. Epub 2022 Aug 15.
8
Prediction of Collision Cross-Section Values for Extractables and Leachables from Plastic Products.
Environ Sci Technol. 2022 Jul 5;56(13):9463-9473. doi: 10.1021/acs.est.2c02853. Epub 2022 Jun 22.
9
Interplatform comparison between three ion mobility techniques for human plasma lipid collision cross sections.
Anal Chim Acta. 2024 May 22;1304:342535. doi: 10.1016/j.aca.2024.342535. Epub 2024 Mar 26.
10
Predicting Collision Cross-Section Values for Small Molecules through Chemical Class-Based Multimodal Graph Attention Network.
J Chem Inf Model. 2024 Aug 26;64(16):6305-6315. doi: 10.1021/acs.jcim.3c01934. Epub 2024 Jul 3.

引用本文的文献

2
On Selecting Robust Approaches for Learning Predictive Biomarkers in Metabolomics Data Sets.
Anal Chem. 2025 Jun 24;97(24):12669-12678. doi: 10.1021/acs.analchem.5c01049. Epub 2025 Jun 12.
3
Deep MALDI-MS spatial omics guided by quantum cascade laser mid-infrared imaging microscopy.
Nat Commun. 2025 May 22;16(1):4759. doi: 10.1038/s41467-025-59839-3.
4
PubChemLite Plus Collision Cross Section (CCS) Values for Enhanced Interpretation of Nontarget Environmental Data.
Environ Sci Technol Lett. 2025 Jan 24;12(2):166-174. doi: 10.1021/acs.estlett.4c01003. eCollection 2025 Feb 11.
5
In Silico Characterization of Glycan Ions from IM-MS Collision Cross Section.
J Am Soc Mass Spectrom. 2025 Mar 5;36(3):504-513. doi: 10.1021/jasms.4c00370. Epub 2025 Feb 10.
6
From multi-omics to predictive biomarker: AI in tumor microenvironment.
Front Immunol. 2024 Dec 23;15:1514977. doi: 10.3389/fimmu.2024.1514977. eCollection 2024.
8
Evaluating the generalizability of graph neural networks for predicting collision cross section.
J Cheminform. 2024 Aug 29;16(1):105. doi: 10.1186/s13321-024-00899-w.

本文引用的文献

1
Collision cross section compendium to annotate and predict multi-omic compound identities.
Chem Sci. 2018 Nov 27;10(4):983-993. doi: 10.1039/c8sc04396e. eCollection 2019 Jan 28.
2
ISiCLE: A Quantum Chemistry Pipeline for Establishing in Silico Collision Cross Section Libraries.
Anal Chem. 2019 Apr 2;91(7):4346-4356. doi: 10.1021/acs.analchem.8b04567. Epub 2019 Mar 6.
3
Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
Methods Mol Biol. 2019;1903:219-237. doi: 10.1007/978-1-4939-8955-3_13.
4
Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry.
Anal Chem. 2018 Dec 18;90(24):14484-14492. doi: 10.1021/acs.analchem.8b04322. Epub 2018 Nov 30.
5
Comparison of CCS Values Determined by Traveling Wave Ion Mobility Mass Spectrometry and Drift Tube Ion Mobility Mass Spectrometry.
Anal Chem. 2018 Oct 16;90(20):12042-12050. doi: 10.1021/acs.analchem.8b02711. Epub 2018 Sep 27.
6
9
Mordred: a molecular descriptor calculator.
J Cheminform. 2018 Feb 6;10(1):4. doi: 10.1186/s13321-018-0258-y.
10
The rise of deep learning in drug discovery.
Drug Discov Today. 2018 Jun;23(6):1241-1250. doi: 10.1016/j.drudis.2018.01.039. Epub 2018 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验