University Medical Center Hamburg Eppendorf, Institute of Experimental Pharmacology and Toxicology, 20246, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
University Medical Center Hamburg Eppendorf, Institute of Experimental Pharmacology and Toxicology, 20246, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany; University Heart Center Hamburg, Department of Cardiology-Electrophysiology, Hamburg, Germany.
Biomaterials. 2019 Jun;206:133-145. doi: 10.1016/j.biomaterials.2019.03.023. Epub 2019 Mar 21.
Biological pacemakers could be a promising alternative to electronic pacemakers and human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) may represent a suitable source for implantable cells. To further unravel this potential a thorough understanding of pacemaker function with regard to coupling processes both in the physiological and in the graft-host context is required. Here we developed a 2-component cardiac organoid model with a hiPSC-CM embryoid body (EB) as trigger casted into a rat engineered heart tissue (EHT) as arrhythmic beating substrate. Contractility recordings revealed that the EB controlled the beating activity of the EHT, leading to a regular hiPSC-CM-like beating pattern instead of the irregular beating typically seen in rat EHT. Connectivity was observed with action potential (AP) measurements and calcium transients transmitting from the EB directly into the rat EHT. Immunohistochemistry and genetically labeled hiPSC-CMs demonstrated that EB-derived and rat cells intermingled and formed a transitional zone. Connexin 43 expression followed the same pattern as histological and computer models have indicated for the human sinoatrial node. In conclusion, hiPSC-CM EBs function as a biological pacemaker in a 2-component cardiac organoid model, which provides the possibility to study electrophysiological and structural coupling mechanisms underlying propagation of pacemaker activity.
生物起搏器可能是电子起搏器的一种有前途的替代品,而人类诱导多能干细胞衍生的心肌细胞(hiPSC-CM)可能代表了可植入细胞的合适来源。为了进一步挖掘这种潜力,需要深入了解起搏器功能,包括在生理和移植物-宿主环境中的偶联过程。在这里,我们开发了一种 2 组件的心脏类器官模型,其中 hiPSC-CM 胚状体(EB)作为触发物被浇铸到大鼠工程心脏组织(EHT)中作为心律失常跳动的基质。收缩性记录显示,EB 控制 EHT 的跳动活动,导致类似于 hiPSC-CM 的有规律的跳动模式,而不是大鼠 EHT 中通常出现的不规则跳动。通过动作电位(AP)测量和钙瞬变的传输,可以观察到连通性,钙瞬变直接从 EB 传入大鼠 EHT。免疫组织化学和基因标记的 hiPSC-CMs 表明,EB 衍生的大鼠细胞相互混合并形成过渡区。连接蛋白 43 的表达模式与组织学和计算机模型为人类窦房结所指示的相同。总之,hiPSC-CM EB 在 2 组件心脏类器官模型中充当生物起搏器,为研究起搏器活动传播的电生理和结构偶联机制提供了可能性。