Suppr超能文献

可解释机器学习在推断非平衡系统相界中的应用。

Interpretable machine learning for inferring the phase boundaries in a nonequilibrium system.

机构信息

Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium.

出版信息

Phys Rev E. 2019 Feb;99(2-1):023304. doi: 10.1103/PhysRevE.99.023304.

Abstract

Still under debate is the question of whether machine learning is capable of going beyond black-box modeling for complex physical systems. We investigate the generalizing and interpretability properties of learning algorithms. To this end, we use supervised and unsupervised learning to infer the phase boundaries of the active Ising model, starting from an ensemble of configurations of the system. We illustrate that unsupervised learning techniques are powerful at identifying the phase boundaries in the control parameter space, even in situations of phase coexistence. It is demonstrated that supervised learning with neural networks is capable of learning the characteristics of the phase diagram, such that the knowledge obtained at a limited set of control variables can be used to determine the phase boundaries across the phase diagram. In this way, we show that properly designed supervised learning provides predictive power to regions in the phase diagram that are not included in the training phase of the algorithm. We stress the importance of introducing interpretability methods in order to perform a physically relevant classification of the phases with deep learning.

摘要

机器学习是否能够超越复杂物理系统的黑盒建模,这仍然存在争议。我们研究了学习算法的泛化和可解释性。为此,我们使用监督学习和无监督学习从系统的配置集合中推断活跃伊辛模型的相界。我们说明,即使在共存相的情况下,无监督学习技术也可以在控制参数空间中识别相界。研究表明,神经网络的监督学习能够学习相图的特征,使得在有限的控制变量集上获得的知识可以用于确定整个相图中的相界。通过这种方式,我们表明,经过适当设计的监督学习可以为算法训练阶段未包含的相图区域提供预测能力。我们强调了引入可解释性方法的重要性,以便通过深度学习对相进行物理相关的分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验