Tian Yuan, Yuan Ruihao, Xue Dezhen, Zhou Yumei, Wang Yunfan, Ding Xiangdong, Sun Jun, Lookman Turab
State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China.
Los Alamos National Laboratory Los Alamos New Mexico 87545 USA.
Adv Sci (Weinh). 2020 Nov 23;8(1):2003165. doi: 10.1002/advs.202003165. eCollection 2020 Jan.
Herein, we demonstrate how to predict and experimentally validate phase diagrams for multi-component systems from a high-dimensional virtual space of all possible phase diagrams involving several elements based on small existing experimental data. The experimental data for bulk phases for known systems represents a sampling from this space, and screening the space allows multi-component phase diagrams with given design criteria to be built. This approach uses machine learning methods to predict phase diagrams and Bayesian experimental design to minimize experiments for refinement and validation, all within an active learning loop. The approach is proven by predicting and synthesizing the ferroelectric ceramic system (1-)(BaCaSrTiO)-(BaTiZrSnHfO) with a relatively high transition temperature and triple point, as well as the NiTi-based pseudo-binary phase diagram (1-)(TiNiHfZr)-(TiNiHfZrNb) designed for high transition temperature ( ⩽ 1). Each phase diagram is validated and optimized through only three new experiments. The complexity of these compounds is beyond the reach of today's computational methods.
在此,我们展示了如何基于少量现有的实验数据,从涉及多个元素的所有可能相图的高维虚拟空间中预测并通过实验验证多组分系统的相图。已知系统的体相实验数据代表了从该空间的采样,对该空间进行筛选可构建具有给定设计标准的多组分相图。这种方法使用机器学习方法预测相图,并使用贝叶斯实验设计来最小化用于细化和验证的实验,所有这些都在主动学习循环中进行。通过预测和合成具有相对较高转变温度和三相点的铁电陶瓷系统(1-)(BaCaSrTiO)-(BaTiZrSnHfO)以及设计用于高转变温度(⩽1)的NiTi基伪二元相图(1-)(TiNiHfZr)-(TiNiHfZrNb),验证了该方法。每个相图仅通过三个新实验就得到了验证和优化。这些化合物的复杂性是当今计算方法无法企及的。