Suppr超能文献

复杂流动模拟的格子动力学方案的理论和数值分析。

Theoretical and numerical analysis of the lattice kinetic scheme for complex-flow simulations.

机构信息

Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", D-39106 Magdeburg, Germany.

Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France.

出版信息

Phys Rev E. 2019 Feb;99(2-1):023305. doi: 10.1103/PhysRevE.99.023305.

Abstract

The lattice kinetic scheme (LKS) is a modified version of the classical single relaxation time lattice Boltzmann method. Although used for many applications, especially when large variations in viscosity are involved, a thorough analysis of the scheme has not been provided yet. In the context of this work, the macroscopic behavior of this scheme is evaluated through the Chapman-Enskog analysis. It is shown that the additional degree of freedom provided in the scheme allows for an independent control of higher-order moments. These results are further corroborated by numerical simulations. The behavior of this numerical scheme is studied for selected external and internal flows to clarify the effect of the free parameter on the different moments of the distribution function. It is shown that it is more stable than SRT (single relaxation time) when confronted to fully periodic under-resolved simulations (especially for λ≈1). It can also help minimize the error coming from the viscosity-dependence of the wall position when combined with the bounce-back approach; although still present, viscosity-dependence of the wall position is reduced. Furthermore, as shown through the multiscale analysis, specific choices of the free parameter can cancel out the leading-order error. Overall, the LKS is shown to be a useful and efficient alternative to the SRT method for simulating numerically complex flows.

摘要

格子动力方案(LKS)是经典单松弛时间格子玻尔兹曼方法的改进版本。尽管该方案已被用于许多应用,特别是在涉及粘度较大变化的情况下,但尚未对其进行全面分析。在这项工作中,通过Chapman-Enskog 分析评估了该方案的宏观行为。结果表明,该方案中提供的额外自由度允许独立控制更高阶矩。这些结果通过数值模拟进一步得到证实。研究了选定的外部和内部流动,以研究该数值方案的行为,从而阐明自由参数对分布函数不同矩的影响。结果表明,与完全周期性欠分辨模拟相比,它比 SRT(单松弛时间)更稳定(尤其是对于 λ≈1)。当与反弹方法结合使用时,它还可以帮助最小化壁面位置的粘性依赖性引起的误差;尽管仍然存在,但壁面位置的粘性依赖性会降低。此外,正如多尺度分析所示,自由参数的特定选择可以消除主导阶误差。总体而言,LKS 被证明是模拟数值复杂流动的 SRT 方法的有效替代方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验