Department of Psychological Sciences and CT Institute for Brain and Cognitive Science, University of Connecticut, Storrs, Connecticut 06269, USA.
Phys Rev E. 2019 Feb;99(2-1):022421. doi: 10.1103/PhysRevE.99.022421.
We study mode locking in a canonical model of gradient frequency neural networks under periodic forcing. The canonical model is a generic mathematical model for a network of nonlinear oscillators tuned to a range of distinct frequencies. It is mathematically more tractable than biological neuron models and allows close analysis of mode-locking behaviors. Here we analyze individual modes of synchronization for a periodically forced canonical model and present a complete set of driven behaviors for all parameter regimes available in the model. Using a closed-form approximation, we show that the Arnold tongue (i.e., locking region) for k:m synchronization gets narrower as k and m increase. We find that numerical simulations of the canonical model closely follow the analysis of individual modes when forcing is weak, but they deviate at high forcing amplitudes for which oscillator dynamics are simultaneously influenced by multiple modes of synchronization.
我们研究了在周期性驱动下的梯度频率神经网络的典型模型中的锁模现象。典型模型是一个通用的数学模型,用于调谐到一系列不同频率的非线性振荡器网络。它在数学上比生物神经元模型更易于处理,并允许对锁模行为进行深入分析。在这里,我们分析了周期性驱动典型模型的各个同步模式,并为模型中所有可用参数状态呈现了完整的驱动行为集。使用闭式近似,我们表明,随着 k 和 m 的增加,k:m 同步的 Arnold 舌(即锁定区域)会变窄。我们发现,当驱动力较弱时,典型模型的数值模拟与各个模式的分析非常吻合,但在高驱动力幅度下,由于振荡器动力学同时受到多个同步模式的影响,模拟结果会出现偏差。