Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium.
Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg 620075, Russia.
Phys Rev E. 2019 Feb;99(2-1):022217. doi: 10.1103/PhysRevE.99.022217.
In many oscillatory or excitable systems, dynamical patterns emerge which are stationary or periodic in a moving frame of reference. Examples include traveling waves or spiral waves in chemical systems or cardiac tissue. We present a unified theoretical framework for the drift of such patterns under small external perturbations, in terms of overlap integrals between the perturbation and the adjoint critical eigenfunctions of the linearized operator (i.e., response functions). For spiral waves, the finite radius of the spiral tip trajectory and spiral wave meander are taken into account. Different coordinate systems can be chosen, depending on whether one wants to predict the motion of the spiral-wave tip, the time-averaged tip path, or the center of the meander flower. The framework is applied to analyze the drift of a meandering spiral wave in a constant external field in different regimes.
在许多振荡或兴奋系统中,动态模式在运动参考系中呈现出静止或周期性。化学系统或心脏组织中的行波或螺旋波就是例子。我们提出了一个统一的理论框架,用于在小的外部扰动下这些模式的漂移,这是基于线性化算子的扰动和伴随临界特征函数之间的重叠积分(即响应函数)。对于螺旋波,我们考虑了螺旋波尖端轨迹和螺旋波曲折的有限半径。可以选择不同的坐标系,具体取决于是否要预测螺旋波尖端的运动、螺旋波尖端的平均路径或曲折花的中心。该框架应用于分析在不同状态下,在恒定外部场中的曲折螺旋波的漂移。