Suppr超能文献

在集胞藻6803中构建诱导型T7 RNA聚合酶/T7启动子回路

Building an Inducible T7 RNA Polymerase/T7 Promoter Circuit in Synechocystis sp. PCC6803.

作者信息

Jin Haojie, Lindblad Peter, Bhaya Devaki

机构信息

Department of Plant Biology , Carnegie Institution for Science , Stanford , California 94305 , United States.

Microbial Chemistry, Department of Chemistry-Ångström , Uppsala University , Box 523, SE 75120 , Uppsala , Sweden.

出版信息

ACS Synth Biol. 2019 Apr 19;8(4):655-660. doi: 10.1021/acssynbio.8b00515. Epub 2019 Apr 3.

Abstract

To develop tightly regulated orthogonal gene expression circuits in the photoautotrophic cyanobacterium Synechocystis sp. PCC6803 (Syn6803), we designed a circuit in which a native inducible promoter drives the expression of phage T7 RNA polymerase (T7RNAP). T7RNAP, in turn, specifically recognizes the T7 promoter that is designed to drive GFP expression. In Syn6803, this T7RNAP/T7promoter-GFP circuit produces high GFP fluorescence, which was further enhanced by using mutant T7 promoters. We also tested two orthogonal inducible promoters, Trc1O and L03, but these promoters drive T7RNAP to levels that are toxic in E. coli. Introduction of a protein degradation tag alleviated this problem. However, in Syn6803, these circuits did not function successfully. This highlights the underappreciated fact that similar circuits work with varying efficiencies in different chassis organisms. This lays the groundwork for developing new orthogonally controlled phage RNA polymerase-dependent expression systems in Syn6803.

摘要

为了在光合自养蓝藻集胞藻PCC6803(Syn6803)中构建严格调控的正交基因表达电路,我们设计了一个电路,其中一个天然诱导型启动子驱动噬菌体T7 RNA聚合酶(T7RNAP)的表达。反过来,T7RNAP特异性识别设计用于驱动绿色荧光蛋白(GFP)表达的T7启动子。在Syn6803中,这个T7RNAP/T7启动子-GFP电路产生高GFP荧光,通过使用突变的T7启动子进一步增强。我们还测试了两个正交诱导型启动子Trc1O和L03,但这些启动子将T7RNAP驱动到对大肠杆菌有毒的水平。引入蛋白质降解标签缓解了这个问题。然而,在Syn6803中,这些电路未能成功发挥作用。这凸显了一个未被充分认识的事实,即类似的电路在不同的底盘生物体中以不同的效率工作。这为在Syn6803中开发新的正交控制的噬菌体RNA聚合酶依赖性表达系统奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验