Roussou Stamatina, Albergati Alessia, Liang Feiyan, Lindblad Peter
Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
Metab Eng Commun. 2021 Jan 11;12:e00161. doi: 10.1016/j.mec.2021.e00161. eCollection 2021 Jun.
Cyanobacteria are one of the most promising microorganisms to produce biofuels and renewable chemicals due to their oxygenic autotrophic growth properties. However, to rely on photosynthesis, which is one of the main reasons for slow growth, low carbon assimlation rate and low production, is a bottleneck. To address this challenge, optimizing the Calvin-Benson-Bassham (CBB) cycle is one of the strategies since it is the main carbon fixation pathway. In a previous study, we showed that overexpression of either aldolase (FBA), transketolase (TK), or fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), enzymes responsible for RuBP regeneration and vital for controlling the CBB carbon flux, led to higher production rates and titers in ethanol producing strains of PCC 6803. In the present study, we investigated the combined effects of the above enzymes on ethanol production in PCC 6803. The ethanol production of the strains overexpressing two CBB enzymes (FBA + TK, FBP/SBPase + FBA or FBP/SBPase + TK) was higher than the respective control strains, overexpressing either FBA or TK. The co-overexpression of FBA and TK led to more than 9 times higher ethanol production compared to the overexpression of FBA. Compared to TK the respective increase is 4 times more ethanol production. Overexpression of FBP/SBPase in combination with FBA showed 2.5 times higher ethanol production compared to FBA. Finally, co-overexpression of FBP/SBPase and TK reached about twice the production of ethanol compared to overexpression of only TK. This study clearly demonstrates that overexpression of two selected CBB enzymes leads to significantly increased ethanol production compared to overexpression of a single CBB enzyme.
蓝藻细菌因其产氧自养生长特性,是最有前景的用于生产生物燃料和可再生化学品的微生物之一。然而,依赖光合作用(这是生长缓慢、碳同化率低和产量低的主要原因之一)是一个瓶颈。为应对这一挑战,优化卡尔文-本森-巴斯姆(CBB)循环是策略之一,因为它是主要的碳固定途径。在之前的一项研究中,我们表明,过表达醛缩酶(FBA)、转酮醇酶(TK)或果糖-1,6/景天庚酮糖-1,7-双磷酸酶(FBP/SBPase)(负责核酮糖-1,5-二磷酸再生且对控制CBB碳通量至关重要的酶),会使乙醇生产菌株PCC 6803的生产率和滴度更高。在本研究中,我们研究了上述酶对PCC 6803中乙醇生产的联合作用。过表达两种CBB酶(FBA + TK、FBP/SBPase + FBA或FBP/SBPase + TK)的菌株的乙醇产量高于各自过表达FBA或TK的对照菌株。与过表达FBA相比,FBA和TK的共过表达导致乙醇产量高出9倍多。与TK相比,相应的乙醇产量增加了4倍。FBP/SBPase与FBA联合过表达显示,与FBA相比,乙醇产量高出2.5倍。最后,与仅过表达TK相比,FBP/SBPase和TK的共过表达使乙醇产量达到约两倍。这项研究清楚地表明,与过表达单一CBB酶相比,过表达两种选定的CBB酶会显著提高乙醇产量。