Department of Radiation Oncology, University of Pennsylvania, Philadelphia, United States.
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, United States.
Radiother Oncol. 2019 Apr;133:106-112. doi: 10.1016/j.radonc.2019.01.003. Epub 2019 Jan 23.
Radiation pneumonitis (RP) is a radiotherapy dose-limiting toxicity for locally advanced non-small cell lung cancer (LA-NSCLC). Prior studies have proposed relevant dosimetric constraints to limit this toxicity. Using machine learning algorithms, we performed analyses of contributing factors in the development of RP to uncover previously unidentified criteria and elucidate the relative importance of individual factors.
We evaluated 32 clinical features per patient in a cohort of 203 stage II-III LA-NSCLC patients treated with definitive chemoradiation to a median dose of 66.6 Gy in 1.8 Gy daily fractions at our institution from 2008 to 2016. Of this cohort, 17.7% of patients developed grade ≥2 RP. Univariate analysis was performed using trained decision stumps to individually analyze statistically significant predictors of RP and perform feature selection. Applying Random Forest, we performed multivariate analysis to assess the combined performance of important predictors of RP.
On univariate analysis, lung V20, lung mean, lung V10 and lung V5 were found to be significant RP predictors with the greatest balance of specificity and sensitivity. On multivariate analysis, Random Forest (AUC = 0.66, p = 0.0005) identified esophagus max (20.5%), lung V20 (16.4%), lung mean (15.7%) and pack-year (14.9%) as the most common primary differentiators of RP.
We highlight Random Forest as an accurate machine learning method to identify known and new predictors of symptomatic RP. Furthermore, this analysis confirms the importance of lung V20, lung mean and pack-year as predictors of RP while also introducing esophagus max as an important RP predictor.
放射性肺炎(RP)是局部晚期非小细胞肺癌(LA-NSCLC)放疗的剂量限制毒性。先前的研究提出了相关的剂量学限制,以限制这种毒性。我们使用机器学习算法对 RP 发展的相关因素进行分析,以揭示以前未识别的标准,并阐明各个因素的相对重要性。
我们评估了 203 例在我院接受根治性放化疗的 II-III 期 LA-NSCLC 患者的 32 项临床特征,中位剂量为 66.6Gy,每日 1.8Gy 分次。在这个队列中,17.7%的患者出现了 2 级及以上的 RP。使用训练好的决策树进行单变量分析,单独分析 RP 的统计学显著预测因子并进行特征选择。应用随机森林,我们进行了多变量分析,以评估 RP 重要预测因子的综合性能。
在单变量分析中,发现肺 V20、肺平均剂量、肺 V10 和肺 V5 是与 RP 相关的重要预测因子,其特异性和敏感性平衡最佳。在多变量分析中,随机森林(AUC=0.66,p=0.0005)确定食管最大值(20.5%)、肺 V20(16.4%)、肺平均剂量(15.7%)和吸烟指数(14.9%)是 RP 最常见的主要鉴别因子。
我们强调随机森林是一种准确的机器学习方法,可用于识别有症状 RP 的已知和新预测因子。此外,该分析证实了肺 V20、肺平均剂量和吸烟指数作为 RP 预测因子的重要性,同时还引入了食管最大值作为 RP 的重要预测因子。