Suppr超能文献

物联网支持的风能转换系统的传感器融合与状态估计。

Sensor Fusion and State Estimation of IoT Enabled Wind Energy Conversion System.

机构信息

School of Computer Science and IT, University College Cork, T12 K8AF Cork, Ireland.

Nimbus Centre, Cork Institute of Technology, T12 P928 Cork, Ireland.

出版信息

Sensors (Basel). 2019 Apr 1;19(7):1566. doi: 10.3390/s19071566.

Abstract

The use of renewable energy has increased dramatically over the past couple of decades. Wind farms, consisting of wind turbines, play a vital role in the generation of renewable energy. For monitoring and maintenance purposes, a wind turbine has a variety of sensors to measure the state of the turbine. Sensor measurements are transmitted to a control center, which is located away from the wind farm, for monitoring and maintenance purposes. It is therefore desirable to ensure reliable wireless communication between the wind turbines and the control center while integrating the observations from different sensors. In this paper, we propose an IoT based communication framework for the purpose of reliable communication between wind turbines and control center. The communication framework is based on repeat-accumulate coded communication to enhance reliability. A fusion algorithm is proposed to exploit the observations from multiple sensors while taking into consideration the unpredictable nature of the wireless channel. The numerical results show that the proposed scheme can closely predict the state of a wind turbine. We also show that the proposed scheme significantly outperforms traditional estimation schemes.

摘要

在过去的几十年中,可再生能源的使用急剧增加。风力发电场由风力涡轮机组成,在可再生能源的产生中起着至关重要的作用。出于监测和维护目的,风力涡轮机具有各种传感器来测量涡轮机的状态。传感器测量值被传输到控制中心,该控制中心位于风力发电场之外,用于监测和维护目的。因此,需要确保风力涡轮机与控制中心之间的可靠无线通信,同时整合来自不同传感器的观测值。在本文中,我们提出了一种基于物联网的通信框架,用于实现风力涡轮机和控制中心之间的可靠通信。该通信框架基于重复累积编码通信来提高可靠性。提出了一种融合算法,以利用来自多个传感器的观测值,同时考虑到无线信道的不可预测性。数值结果表明,所提出的方案可以很好地预测风力涡轮机的状态。我们还表明,所提出的方案显著优于传统的估计方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验