Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR5297, 33000, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR5297, 33000, Bordeaux, France.
Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR5297, 33000, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR5297, 33000, Bordeaux, France.
Exp Cell Res. 2019 Jun 15;379(2):235-244. doi: 10.1016/j.yexcr.2019.03.036. Epub 2019 Mar 31.
Cells are mechanical living machines that remodel their microenvironment by adhering and generating forces on the extracellular matrix (ECM) using integrin-dependent adhesion sites (IAS). In return, the biochemical and physical nature of the ECM determines cellular behavior and morphology during proliferation, differentiation and migration. IAS come in different shapes and forms. They have specific compositions, morphologies, mechanical and biochemical signaling activities, which serve different cellular functions. Proteomic studies showed that IAS are composed of a large repertoire of proteins that could be linked to different functional activities, including signaling, force-transmission and force-sensing. Thanks to recent technological advances in microscopy and protein engineering, it is now possible to localize single proteins in three dimensions inside IAS, determine their diffusive behaviors, orientations, and how much mechanical force is transmitted across individual components. Here, we review how researchers have used those tools to investigate how IAS components assemble and dynamically interact to produce diverse functions of adhesive structures.
细胞是机械性的活体机器,通过黏附在细胞外基质(ECM)上并利用整合素依赖性黏附位点(IAS)产生力来重塑其微环境。反过来,ECM 的生化和物理性质决定了细胞在增殖、分化和迁移过程中的行为和形态。IAS 有不同的形状和形式。它们具有特定的组成、形态、机械和生化信号转导活性,为不同的细胞功能服务。蛋白质组学研究表明,IAS 由大量的蛋白质组成,这些蛋白质可能与不同的功能活动有关,包括信号转导、力传递和力感测。由于显微镜和蛋白质工程的最新技术进步,现在可以在 IAS 内部的三维空间中定位单个蛋白质,确定它们的扩散行为、取向,以及机械力在单个组件之间的传递程度。在这里,我们回顾了研究人员如何利用这些工具来研究 IAS 组件如何组装并动态相互作用以产生黏附结构的多种功能。