Suppr超能文献

验证一种基于速度的算法,以量化轻度创伤性脑损伤和健康对照组在行走和转弯过程中的眼球运动。

Validation of a velocity-based algorithm to quantify saccades during walking and turning in mild traumatic brain injury and healthy controls.

机构信息

Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America. Veterans Affairs Portland Health Care System, Portland, OR, United States of America. Author to whom any correspondence should be addressed.

出版信息

Physiol Meas. 2019 Apr 26;40(4):044006. doi: 10.1088/1361-6579/ab159d.

Abstract

OBJECTIVE

Saccadic (fast) eye movements are a routine aspect of neurological examination and are a potential biomarker of mild traumatic brain injury (mTBI). Objective measurement of saccades has become a prominent focus of mTBI research, as eye movements may be a useful assessment tool for deficits in neural structures or processes. However, saccadic measurement within mobile infra-red (IR) eye-tracker raw data requires a valid algorithm. The objective of this study was to validate a velocity-based algorithm for saccade detection in IR eye-tracking raw data during walking (straight ahead and while turning) in people with mTBI and healthy controls.

APPROACH

Eye-tracking via a mobile IR Tobii Pro Glasses 2 eye-tracker (100 Hz) was performed in people with mTBI (n  =  10) and healthy controls (n  =  10). Participants completed two walking tasks: straight walking (walking back and forth for 1 min over a 10 m distance), and walking and turning (turns course included 45°, 90° and 135° turns). Five trials per subject, for one-hundred total trials, were completed. A previously reported velocity-based saccade detection algorithm was adapted and validated by assessing agreement between algorithm saccade detections and the number of correct saccade detections determined from manual video inspection (ground truth reference).

MAIN RESULTS

Compared with video inspection, the IR algorithm detected ~97% (n  =  4888) and ~95% (n  =  3699) of saccades made by people with mTBI and controls, respectively, with excellent agreement to the ground truth (intra-class correlation coefficient  =  .979 to .999).

SIGNIFICANCE

This study provides a simple yet highly robust algorithm for the processing of mobile eye-tracker raw data in mTBI and controls. Future studies may consider validating this algorithm with other IR eye-trackers and populations.

摘要

目的

扫视(快速)眼球运动是神经检查的常规内容,也是轻度创伤性脑损伤(mTBI)的潜在生物标志物。扫视的客观测量已成为 mTBI 研究的一个突出重点,因为眼球运动可能是评估神经结构或过程缺陷的有用评估工具。然而,在移动近红外(IR)眼动追踪原始数据中,扫视测量需要有效的算法。本研究的目的是验证一种基于速度的算法,用于检测 mTBI 患者和健康对照组在行走(直走和转弯时)过程中移动 IR 眼动追踪原始数据中的扫视。

方法

使用移动近红外 Tobii Pro Glasses 2 眼动追踪仪(100 Hz)进行眼动追踪,参与者包括 mTBI 患者(n = 10)和健康对照组(n = 10)。参与者完成两项行走任务:直走(在 10 m 距离上来回走 1 分钟)和行走及转弯(转弯路线包括 45°、90°和 135°转弯)。每个受试者完成五次试验,共进行 100 次试验。通过评估算法检测到的扫视与手动视频检查(地面实况参考)确定的正确扫视检测数量之间的一致性,对先前报道的基于速度的扫视检测算法进行了改编和验证。

主要结果

与视频检查相比,IR 算法分别检测到 mTBI 患者和对照组中约 97%(n = 4888)和 95%(n = 3699)的扫视,与地面实况高度一致(组内相关系数为.979 至.999)。

意义

本研究为 mTBI 和对照组中移动眼动追踪器原始数据的处理提供了一种简单但非常强大的算法。未来的研究可能会考虑使用其他近红外眼动追踪器和人群验证该算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/006d/7608620/f657d09c20c8/nihms-1639547-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验