Suppr超能文献

可扩张网架电极消融导管:一种新型射频平台,可在低密度下实现大电流,从而实现快速、可滴定和持久的消融灶。

Expandable Lattice Electrode Ablation Catheter: A Novel Radiofrequency Platform Allowing High Current at Low Density for Rapid, Titratable, and Durable Lesions.

机构信息

Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.

出版信息

Circ Arrhythm Electrophysiol. 2019 Apr;12(4):e007090. doi: 10.1161/CIRCEP.118.007090.

Abstract

BACKGROUND

High-current short-duration radiofrequency energy delivery has potential advantages for cardiac ablation. However, this strategy is limited by high current density and narrow safety-to-efficacy window. The objective of this study was to examine a novel strategy for radiofrequency energy delivery using a new electrode design capable of delivering high power at a low current density to increase the therapeutic range of radiofrequency ablation.

METHODS

The Sphere9 is an expandable spheroid-shaped lattice electrode design with an effective surface area 10-fold larger than standard irrigated electrodes (lattice catheter). It incorporates 9 surface temperature sensors with ablation performed in a temperature-controlled mode. Phase I: in 6 thigh muscle preparations, 2 energy settings for atrial ablation were compared between the lattice and irrigated-tip catheters (low-energy: T75°C/5 s versus 25 W/20 s; high-energy: T75°C/7 s versus 30 W/20 s). Phase II: in 8 swine, right atrial lines were created in the posterior and lateral walls using low- and high-energy settings, respectively. Phase III: the safety, efficacy, and durability at 30 days were evaluated by electroanatomical mapping and histopathologic analysis.

RESULTS

In the thigh model, the lattice catheter resulted in wider lesions at both low- and high-energy settings (18.7±3.3 versus 12.2±1.7 mm, P<0.0001; 19.4±2.4 versus 12.3±1.7 mm, P<0.0001). Atrial lines created with the lattice were wider (posterior: 14.7±3.4 versus 9.2±4.0 mm, P<0.0001; lateral: 15.8±4.2 versus 5.7±4.2 mm, P<0.0001) and required 85% shorter ablation time (12.4 versus 79.8 s/cm-line). While current squared (I) was higher with Sphere9 (7.0±0.04 versus 0.2±0.002 A; P<0.0001), the current density was lower (9.6±0.9 versus 16.9±0.09 mA/mm; P<0.0001). At 30 days, 100% of ablation lines created with the lattice catheter remained contiguous compared with only 14.3% lines created with a standard irrigated catheter. This was achieved without steam pops or collateral tissue damage.

CONCLUSIONS

In this preclinical model, a novel, high-current low-density radiofrequency ablation strategy created contiguous and durable ablation lines in significantly less ablation time and a comparable safety profile.

摘要

背景

高电流短时间射频能量传递在心脏消融中有潜在优势。然而,这种策略受到高电流密度和狭窄的安全性-疗效窗口的限制。本研究的目的是研究一种新的射频能量传递策略,该策略使用新的电极设计能够以低电流密度输送高功率,从而扩大射频消融的治疗范围。

方法

Sphere9 是一种可扩展的球形晶格电极设计,其有效表面积比标准灌流电极(晶格导管)大 10 倍。它包含 9 个表面温度传感器,以温度控制模式进行消融。第一阶段:在 6 个大腿肌肉标本中,比较了晶格和灌流尖端导管在心房消融中的两种能量设置(低能量:T75°C/5 s 与 25 W/20 s;高能量:T75°C/7 s 与 30 W/20 s)。第二阶段:在 8 头猪中,分别使用低能量和高能量设置在右心房后壁和侧壁创建右心房线。第三阶段:通过电解剖标测和组织病理学分析评估 30 天时的安全性、疗效和耐久性。

结果

在大腿模型中,晶格导管在低能量和高能量设置下均产生更宽的消融灶(低能量:18.7±3.3 与 12.2±1.7 mm,P<0.0001;高能量:19.4±2.4 与 12.3±1.7 mm,P<0.0001)。用晶格导管创建的心房线更宽(后壁:14.7±3.4 与 9.2±4.0 mm,P<0.0001;侧壁:15.8±4.2 与 5.7±4.2 mm,P<0.0001),消融时间缩短 85%(12.4 与 79.8 s/cm 线)。虽然 Sphere9 的电流平方(I)更高(7.0±0.04 与 0.2±0.002 A;P<0.0001),但电流密度较低(9.6±0.9 与 16.9±0.09 mA/mm;P<0.0001)。在 30 天时,与使用标准灌流导管创建的仅有 14.3%的消融线连续相比,使用晶格导管创建的 100%的消融线连续。这是在没有蒸汽弹出或旁组织损伤的情况下实现的。

结论

在这个临床前模型中,一种新的高电流低密度射频消融策略以更短的消融时间和相当的安全性产生了连续和持久的消融线。

相似文献

2
Novel Irrigated Temperature-Controlled Lattice Ablation Catheter for Ventricular Ablation: A Preclinical Multimodality Biophysical Characterization.
Circ Arrhythm Electrophysiol. 2019 Nov;12(11):e007661. doi: 10.1161/CIRCEP.119.007661. Epub 2019 Nov 11.
4
High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization.
JACC Clin Electrophysiol. 2018 Apr;4(4):467-479. doi: 10.1016/j.jacep.2017.11.018. Epub 2018 Feb 2.
5
In vivo evaluation of virtual electrode mapping and ablation utilizing a direct endocardial visualization ablation catheter.
J Cardiovasc Electrophysiol. 2012 Jan;23(1):88-95. doi: 10.1111/j.1540-8167.2011.02169.x. Epub 2011 Sep 13.

引用本文的文献

2
Impact of irrigation flow rates on lesion size and safety of ablation catheters: an ex vivo porcine heart study.
Heart Vessels. 2025 May;40(5):446-455. doi: 10.1007/s00380-024-02475-6. Epub 2024 Oct 22.
4
Dual-energy lattice-tip ablation system for persistent atrial fibrillation: a randomized trial.
Nat Med. 2024 Aug;30(8):2303-2310. doi: 10.1038/s41591-024-03022-6. Epub 2024 May 17.
6
Optimal ablation settings of TactiFlex SE laser-cut irrigated-tip catheter: comparison with ThermoCool SmartTouch SurroundFlow porous irrigated-tip catheter.
J Interv Card Electrophysiol. 2024 Nov;67(8):1755-1769. doi: 10.1007/s10840-024-01797-9. Epub 2024 Apr 4.
7
Influence of the irrigation flow pattern and catheter tip design on the lesion formation: an ex vivo experimental model.
J Interv Card Electrophysiol. 2024 Apr;67(3):589-597. doi: 10.1007/s10840-023-01633-6. Epub 2023 Sep 11.
9
Time dependency in the radiofrequency lesion formation for a local impedance guided catheter in an ex vivo experimental model.
J Arrhythm. 2022 Oct 13;38(6):1080-1087. doi: 10.1002/joa3.12789. eCollection 2022 Dec.
10
Lattice-tip catheter for single-shot pulmonary vein isolation with pulsed field ablation.
J Interv Card Electrophysiol. 2023 Oct;66(7):1741-1748. doi: 10.1007/s10840-022-01414-7. Epub 2022 Nov 28.

本文引用的文献

2
High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization.
JACC Clin Electrophysiol. 2018 Apr;4(4):467-479. doi: 10.1016/j.jacep.2017.11.018. Epub 2018 Feb 2.
3
High-power and short-duration ablation for pulmonary vein isolation: Safety, efficacy, and long-term durability.
J Cardiovasc Electrophysiol. 2018 Sep;29(9):1287-1296. doi: 10.1111/jce.13651. Epub 2018 Jun 20.
4
Evaluation of ablation catheter technology: Comparison between thigh preparation model and an in vivo beating heart.
Heart Rhythm. 2017 Aug;14(8):1234-1240. doi: 10.1016/j.hrthm.2017.04.035. Epub 2017 Apr 26.
6
Electrophysiologic findings and long-term outcomes in patients undergoing third or more catheter ablation procedures for atrial fibrillation.
J Cardiovasc Electrophysiol. 2015 Apr;26(4):371-377. doi: 10.1111/jce.12603. Epub 2015 Jan 28.
8
9
Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia.
Int J Hyperthermia. 2003 May-Jun;19(3):267-94. doi: 10.1080/0265673031000119006.
10
Basic aspects of radiofrequency catheter ablation.
J Cardiovasc Electrophysiol. 1994 Oct;5(10):863-76. doi: 10.1111/j.1540-8167.1994.tb01125.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验