Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
Circ Arrhythm Electrophysiol. 2019 Apr;12(4):e007090. doi: 10.1161/CIRCEP.118.007090.
High-current short-duration radiofrequency energy delivery has potential advantages for cardiac ablation. However, this strategy is limited by high current density and narrow safety-to-efficacy window. The objective of this study was to examine a novel strategy for radiofrequency energy delivery using a new electrode design capable of delivering high power at a low current density to increase the therapeutic range of radiofrequency ablation.
The Sphere9 is an expandable spheroid-shaped lattice electrode design with an effective surface area 10-fold larger than standard irrigated electrodes (lattice catheter). It incorporates 9 surface temperature sensors with ablation performed in a temperature-controlled mode. Phase I: in 6 thigh muscle preparations, 2 energy settings for atrial ablation were compared between the lattice and irrigated-tip catheters (low-energy: T75°C/5 s versus 25 W/20 s; high-energy: T75°C/7 s versus 30 W/20 s). Phase II: in 8 swine, right atrial lines were created in the posterior and lateral walls using low- and high-energy settings, respectively. Phase III: the safety, efficacy, and durability at 30 days were evaluated by electroanatomical mapping and histopathologic analysis.
In the thigh model, the lattice catheter resulted in wider lesions at both low- and high-energy settings (18.7±3.3 versus 12.2±1.7 mm, P<0.0001; 19.4±2.4 versus 12.3±1.7 mm, P<0.0001). Atrial lines created with the lattice were wider (posterior: 14.7±3.4 versus 9.2±4.0 mm, P<0.0001; lateral: 15.8±4.2 versus 5.7±4.2 mm, P<0.0001) and required 85% shorter ablation time (12.4 versus 79.8 s/cm-line). While current squared (I) was higher with Sphere9 (7.0±0.04 versus 0.2±0.002 A; P<0.0001), the current density was lower (9.6±0.9 versus 16.9±0.09 mA/mm; P<0.0001). At 30 days, 100% of ablation lines created with the lattice catheter remained contiguous compared with only 14.3% lines created with a standard irrigated catheter. This was achieved without steam pops or collateral tissue damage.
In this preclinical model, a novel, high-current low-density radiofrequency ablation strategy created contiguous and durable ablation lines in significantly less ablation time and a comparable safety profile.
高电流短时间射频能量传递在心脏消融中有潜在优势。然而,这种策略受到高电流密度和狭窄的安全性-疗效窗口的限制。本研究的目的是研究一种新的射频能量传递策略,该策略使用新的电极设计能够以低电流密度输送高功率,从而扩大射频消融的治疗范围。
Sphere9 是一种可扩展的球形晶格电极设计,其有效表面积比标准灌流电极(晶格导管)大 10 倍。它包含 9 个表面温度传感器,以温度控制模式进行消融。第一阶段:在 6 个大腿肌肉标本中,比较了晶格和灌流尖端导管在心房消融中的两种能量设置(低能量:T75°C/5 s 与 25 W/20 s;高能量:T75°C/7 s 与 30 W/20 s)。第二阶段:在 8 头猪中,分别使用低能量和高能量设置在右心房后壁和侧壁创建右心房线。第三阶段:通过电解剖标测和组织病理学分析评估 30 天时的安全性、疗效和耐久性。
在大腿模型中,晶格导管在低能量和高能量设置下均产生更宽的消融灶(低能量:18.7±3.3 与 12.2±1.7 mm,P<0.0001;高能量:19.4±2.4 与 12.3±1.7 mm,P<0.0001)。用晶格导管创建的心房线更宽(后壁:14.7±3.4 与 9.2±4.0 mm,P<0.0001;侧壁:15.8±4.2 与 5.7±4.2 mm,P<0.0001),消融时间缩短 85%(12.4 与 79.8 s/cm 线)。虽然 Sphere9 的电流平方(I)更高(7.0±0.04 与 0.2±0.002 A;P<0.0001),但电流密度较低(9.6±0.9 与 16.9±0.09 mA/mm;P<0.0001)。在 30 天时,与使用标准灌流导管创建的仅有 14.3%的消融线连续相比,使用晶格导管创建的 100%的消融线连续。这是在没有蒸汽弹出或旁组织损伤的情况下实现的。
在这个临床前模型中,一种新的高电流低密度射频消融策略以更短的消融时间和相当的安全性产生了连续和持久的消融线。