Suppr超能文献

B 细胞限制——拼图的另一片。

B-cell restriction - an alternative piece to the puzzle.

机构信息

School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv , Tel Aviv , Israel.

出版信息

Hum Vaccin Immunother. 2019;15(9):2044-2049. doi: 10.1080/21645515.2019.1600989. Epub 2019 Apr 23.

Abstract

Effective vaccination is based on three critical aspects of the B-cell response towards infectious agents: (i) that B-cells can generate specific antibodies towards a vast molecular diversity of antigens; proteins, sugars, DNA and lipids. There seems to be no limit to the ability to raise antibodies to everything. (ii) once stimulated, B-cells can perfect their antibodies through affinity maturation to complement every nook and cranny of the epitope and (iii) that the pathogen remains genetically stable and does not change to any great extent. Thus, antibodies produced against the vaccine and subsequent boosts recognize the viral virulent field isolates in future encounters and effectively knock them out. However, some vaccine targets, such as flu virus and HIV, are extremely genetically dynamic. The rapid genetic drift of these viruses renders them moving targets which assist in their ability to evade immune surveillance. Here we postulate that in the case of hyper-variable pathogens the B-cell response actually might be "too good". We propose that restricting B-cell activities may prove effective in counteracting the genetic diversity of variant viruses such as flu and HIV. We suggest two levels of "B-cell restriction": (i) to focus the B-cell response exclusively towards neutralizing epitopes by creating epitope-based immunogens; (ii) to restrict affinity maturation of B-cells to prevent the production of overly optimized exquisitely specific antibodies. Together, these "B-cell restrictions" provide a new modality for vaccine design.

摘要

有效的疫苗接种基于 B 细胞针对传染性病原体的反应的三个关键方面:(i)B 细胞能够针对抗原的巨大分子多样性(蛋白质、糖、DNA 和脂质)产生特异性抗体。似乎没有能力对所有事物产生抗体的限制。(ii)一旦受到刺激,B 细胞可以通过亲和力成熟来完善其抗体,以补充表位的每一个角落和缝隙,以及 (iii)病原体保持遗传稳定,不会发生太大变化。因此,针对疫苗和随后的加强针产生的抗体在未来的接触中识别出病毒的毒力分离株,并有效地将其消除。然而,一些疫苗靶点,如流感病毒和 HIV,具有极高的遗传动态性。这些病毒的快速遗传漂移使它们成为移动目标,有助于它们逃避免疫监视。在这里,我们假设在高变病原体的情况下,B 细胞反应实际上可能“过于有效”。我们提出,限制 B 细胞的活性可能有助于对抗流感和 HIV 等变体病毒的遗传多样性。我们提出了两种“B 细胞限制”的水平:(i) 通过创建基于表位的免疫原,将 B 细胞反应专门集中在中和表位上;(ii) 限制 B 细胞的亲和力成熟,以防止产生过于优化的高度特异性抗体。这些“B 细胞限制”共同为疫苗设计提供了一种新的模式。

相似文献

1
B-cell restriction - an alternative piece to the puzzle.B 细胞限制——拼图的另一片。
Hum Vaccin Immunother. 2019;15(9):2044-2049. doi: 10.1080/21645515.2019.1600989. Epub 2019 Apr 23.

引用本文的文献

1
Functional reconstitution of the MERS CoV receptor binding motif.MERS-CoV 受体结合基序的功能重建。
Mol Immunol. 2022 May;145:3-16. doi: 10.1016/j.molimm.2022.03.006. Epub 2022 Mar 4.

本文引用的文献

1
Treating Influenza Infection, From Now and Into the Future.治疗流感感染,从现在到未来。
Front Immunol. 2018 Sep 10;9:1946. doi: 10.3389/fimmu.2018.01946. eCollection 2018.
2
Novel Platforms for the Development of a Universal Influenza Vaccine.新型平台助力通用型流感疫苗研发。
Front Immunol. 2018 Mar 23;9:600. doi: 10.3389/fimmu.2018.00600. eCollection 2018.
3
Fundamental challenges to the development of a preventive HIV vaccine.发展预防性艾滋病毒疫苗的基本挑战。
Curr Opin Virol. 2018 Apr;29:26-32. doi: 10.1016/j.coviro.2018.02.004. Epub 2018 Mar 14.
5
Non-Neutralizing Antibodies Directed against HIV and Their Functions.针对HIV的非中和抗体及其功能
Front Immunol. 2017 Nov 20;8:1590. doi: 10.3389/fimmu.2017.01590. eCollection 2017.
9
Structural principles controlling HIV envelope glycosylation.控制HIV包膜糖基化的结构原理。
Curr Opin Struct Biol. 2017 Jun;44:125-133. doi: 10.1016/j.sbi.2017.03.008. Epub 2017 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验