Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY, USA.
Center for Computational Biology, Flatiron Institute, New York, NY, USA.
Science. 2019 Apr 5;364(6435):89-93. doi: 10.1126/science.aav9776.
Paralysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal muscle as a consequence of motor neuron degeneration. Interactions between motor neurons and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events that drive these processes in intact spinal tissue remains poorly understood. Here, we use spatial transcriptomics to obtain gene expression measurements of mouse spinal cords over the course of disease, as well as of postmortem tissue from ALS patients, to characterize the underlying molecular mechanisms in ALS. We identify pathway dynamics, distinguish regional differences between microglia and astrocyte populations at early time points, and discern perturbations in several transcriptional pathways shared between murine models of ALS and human postmortem spinal cords.
肌萎缩侧索硬化症 (ALS) 中发生的瘫痪是由于运动神经元退化导致骨骼肌失神经支配所致。运动神经元和神经胶质之间的相互作用导致运动神经元丧失,但在完整的脊髓组织中驱动这些过程的分子事件的时空顺序仍知之甚少。在这里,我们使用空间转录组学来获得疾病过程中以及 ALS 患者死后组织的小鼠脊髓的基因表达测量值,以表征 ALS 中的潜在分子机制。我们确定了途径动态,在早期阶段区分了小胶质细胞和星形胶质细胞群体之间的区域差异,并发现了几种在 ALS 小鼠模型和人类死后脊髓中共享的转录途径的扰动。