Water and Wastewater Research Center (WWRC), Water Research Institute (WRI), Shahid Abbaspour Blvd., Tehran, 16765 313, Iran.
Dalton Trans. 2019 Apr 16;48(16):5429-5443. doi: 10.1039/c9dt00520j.
Crystal phase and morphology variations obtained by simple high-temperature annealing offer promising strategies for employing nanostructured manganese oxide as a cathode catalyst for microbial fuel cells (MFCs). This study examines the effectiveness of simultaneous-phase and morphology-controlled manganese dioxide nanomaterials, designed by annealing a hydrothermally synthesized flower-like δ-manganese dioxide precursor at 300-800 °C, as cathode catalysts for MFCs. MFCs with the best-performing catalyst cathode (at a reasonable mass loading) were also analyzed through cyclic voltammetry and electrochemical impedance spectroscopy. Among MFCs with non-annealed and annealed manganese dioxide cathodes (0.5 mg cm-2), those with the catalyst annealed at 500 °C (148 ± 7 mW m-2, CE = 13 ± 1%) generated the most power (5-52%). MFCs with the catalyst annealed at 500 °C at a loading of 1 mg cm-2 as the cathode delivered the highest maximum power density (213 ± 9 mW m-2, CE = 13 ± 1%), representing 44% of that obtained using Pt/C at 0.5 mg Pt per cm2 (483 ± 11 mW m-2, CE = 18 ± 2%) and a comparatively low internal resistance (164 ± 2 Ω). Both cyclic voltammetry and electrochemical impedance spectroscopy results were consistent with empirical data. Compared with previously reported cathode materials, the annealed product from the precursor flower-like δ-manganese dioxide annealed at 500 °C (particularly at a loading of 1 mg cm-2) was a more reliable, efficient, and inexpensive sustainable cathode catalyst for scaled-up MFCs.
通过简单的高温退火获得的晶体相和形态变化为将纳米结构氧化锰用作微生物燃料电池 (MFC) 的阴极催化剂提供了有前景的策略。本研究考察了通过在 300-800°C 下退火水热合成的花状 δ-二氧化锰前体制备的同时控制相和形态的二氧化锰纳米材料作为 MFC 阴极催化剂的有效性。还通过循环伏安法和电化学阻抗谱分析了具有最佳性能催化剂阴极(在合理的质量负载下)的 MFC。在未退火和退火的二氧化锰阴极的 MFC 中(0.5 mg cm-2),在 500°C 下退火的催化剂(148 ± 7 mW m-2,CE = 13 ± 1%)产生的功率最大(5-52%)。在 1 mg cm-2 作为阴极的催化剂在 500°C 下退火的 MFC 中,最大功率密度(213 ± 9 mW m-2,CE = 13 ± 1%)最高,代表使用 Pt/C 时的 44%(0.5 mg Pt cm-2 为 483 ± 11 mW m-2,CE = 18 ± 2%)和相对较低的内阻(164 ± 2 Ω)。循环伏安法和电化学阻抗谱结果与经验数据一致。与以前报道的阴极材料相比,在 500°C 下退火的前驱体形如花的 δ-二氧化锰的退火产物(特别是在 1 mg cm-2 的负载下)是一种更可靠、高效且廉价的可扩展 MFC 的可持续阴极催化剂。