Suppr超能文献

AbPredict 2:一个用于准确、无约束抗体可变结构域结构预测的服务器。

AbPredict 2: a server for accurate and unstrained structure prediction of antibody variable domains.

机构信息

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.

Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia.

出版信息

Bioinformatics. 2019 May 1;35(9):1591-1593. doi: 10.1093/bioinformatics/bty822.

Abstract

SUMMARY

Methods for antibody structure prediction rely on sequence homology to experimentally determined structures. Resulting models may be accurate but are often stereochemically strained, limiting their usefulness in modeling and design workflows. We present the AbPredict 2 web-server, which instead of using sequence homology, conducts a Monte Carlo-based search for low-energy combinations of backbone conformations to yield accurate and unstrained antibody structures.

AVAILABILITY AND IMPLEMENTATION

We introduce several important improvements over the previous AbPredict implementation: (i) backbones and sidechains are now modeled using ideal bond lengths and angles, substantially reducing stereochemical strain, (ii) sampling of the rigid-body orientation at the light-heavy chain interface is improved, increasing model accuracy and (iii) runtime is reduced 20-fold without compromising accuracy, enabling the implementation of AbPredict 2 as a fully automated web-server (http://abpredict.weizmann.ac.il). Accurate and unstrained antibody model structures may in some cases obviate the need for experimental structures in antibody optimization workflows.

摘要

摘要

抗体结构预测方法依赖于与实验确定结构的序列同源性。由此产生的模型可能是准确的,但往往在立体化学上存在应变,限制了它们在建模和设计工作流程中的用途。我们介绍了 AbPredict 2 网络服务器,它不是使用序列同源性,而是进行基于蒙特卡罗的搜索,以产生低能量的骨架构象组合,从而得到准确且无应变的抗体结构。

可用性和实现

我们在以前的 AbPredict 实现中引入了几个重要的改进:(i)现在使用理想的键长和角度来模拟骨干和侧链,大大减少了立体化学应变,(ii)改进了轻链-重链界面处的刚体取向的采样,提高了模型的准确性,(iii)在不影响准确性的情况下将运行时间缩短了 20 倍,从而能够将 AbPredict 2 实现为一个全自动的网络服务器(http://abpredict.weizmann.ac.il)。在某些情况下,准确且无应变的抗体模型结构可能会避免在抗体优化工作流程中需要实验结构。

相似文献

7
RosettaAntibody: antibody variable region homology modeling server.罗塞塔抗体:抗体可变区同源建模服务器。
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W474-9. doi: 10.1093/nar/gkp387. Epub 2009 May 20.
8
The FALC-Loop web server for protein loop modeling.FALC-Loop 蛋白质环建模网络服务器。
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W210-4. doi: 10.1093/nar/gkr352. Epub 2011 May 16.
10
ModLoop: automated modeling of loops in protein structures.ModLoop:蛋白质结构中环的自动建模
Bioinformatics. 2003 Dec 12;19(18):2500-1. doi: 10.1093/bioinformatics/btg362.

引用本文的文献

2
Nanobodies: From Discovery to AI-Driven Design.纳米抗体:从发现到人工智能驱动的设计
Biology (Basel). 2025 May 14;14(5):547. doi: 10.3390/biology14050547.
4
How can we discover developable antibody-based biotherapeutics?我们如何发现可开发的基于抗体的生物疗法?
Front Mol Biosci. 2023 Aug 7;10:1221626. doi: 10.3389/fmolb.2023.1221626. eCollection 2023.
8
VH Structural Modelling Approaches: A Critical Review.VH 结构建模方法:批判性评价。
Int J Mol Sci. 2022 Mar 28;23(7):3721. doi: 10.3390/ijms23073721.

本文引用的文献

1
Principles for computational design of binding antibodies.结合抗体计算设计的原则。
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10900-10905. doi: 10.1073/pnas.1707171114. Epub 2017 Sep 25.
4
SAbPred: a structure-based antibody prediction server.SAbPred:一个基于结构的抗体预测服务器。
Nucleic Acids Res. 2016 Jul 8;44(W1):W474-8. doi: 10.1093/nar/gkw361. Epub 2016 Apr 29.
7
Second antibody modeling assessment (AMA-II).第二抗体建模评估(AMA-II)。
Proteins. 2014 Aug;82(8):1553-62. doi: 10.1002/prot.24567. Epub 2014 Apr 26.
9
Antibody-enabled small-molecule drug discovery.抗体介导的小分子药物发现。
Nat Rev Drug Discov. 2012 Jun 29;11(7):519-25. doi: 10.1038/nrd3756.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验