Lyttle T W, Brittnacher J G, Ganetzky B
Genetics. 1986 Sep;114(1):183-202. doi: 10.1093/genetics/114.1.183.
Identification of allelic variability at the two major loci (Sd and Rsp) that interact to cause sperm dysfunction in Segregation distorter (SD) males of D. melanogaster has been hampered by the difficulty in separating the elements recombinationally. In addition, small differences in the strength of Sd alleles or sensitivities of Rsp alleles to Sd are difficult to measure against background genetic or environmental variation. Viability effects of the markers used to score progeny classes may also introduce a bias. Removal of Sd and E(SD) from their second chromosome location to create a Dp(2;Y)Sd E(SD) chromosome eliminates these problems, since any combination of Rsp alleles can be easily tested without resorting to recombinational techniques. Further, since these pairs of Rsp alleles are compared in their response to Dp Sd E(SD) in the same individual males, background variation and viability effects can be easily removed to allow fine-scale resolution of Rsp differences. Tests of all possible pairwise combination of six laboratory chromosomes in this way revealed at least three and possibly four different Rsp allelic classes. In addition, the hierarchical nature of the tests further allowed for determination of the presence of linked suppressors or enhancers of Sd activity. A sample of 11 second chromosomes selected from a group recently isolated from a natural population was also unambiguously ordered as to Rsp allelic status using this approach. The resultant pattern was similar to that obtained for the laboratory chromosomes, except for the not unexpected observation that the natural population apparently harbored more drive suppressors. The pattern of results obtained from these pairwise combinations of Rsp alleles supports the notion that there are no dominance interactions within the group, but that each responds more or less independently to Sd in giving sperm dysfunction.
在黑腹果蝇的分离畸变(SD)雄性中,识别两个主要基因座(Sd和Rsp)上的等位基因变异一直受到阻碍,因为通过重组分离这些元件存在困难,这两个基因座相互作用会导致精子功能障碍。此外,Sd等位基因强度或Rsp等位基因对Sd敏感性的微小差异,很难在背景遗传或环境变异的情况下进行测量。用于对后代类别进行评分的标记的生存力效应也可能会引入偏差。将Sd和E(SD)从其第二条染色体位置移除,以创建一个Dp(2;Y)Sd E(SD)染色体,消除了这些问题,因为任何Rsp等位基因组合都可以轻松测试,而无需借助重组技术。此外,由于在同一个体雄性中比较了这些Rsp等位基因对Dp Sd E(SD)的反应,背景变异和生存力效应可以很容易地消除,从而能够对Rsp差异进行精细分辨率分析。通过这种方式对六个实验室染色体的所有可能成对组合进行测试,发现至少有三个,可能有四个不同的Rsp等位基因类别。此外,测试的层级性质进一步允许确定Sd活性的连锁抑制因子或增强因子的存在。使用这种方法,从最近从自然种群中分离出的一组中选择的11条第二条染色体样本,也能够明确确定其Rsp等位基因状态。得到的模式与实验室染色体的模式相似,除了一个不出所料的观察结果,即自然种群显然含有更多的驱动抑制因子。从这些Rsp等位基因的成对组合中获得的结果模式支持了这样一种观点,即在该组内不存在显性相互作用,而是每个等位基因在导致精子功能障碍方面对Sd或多或少地独立做出反应。