文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自动评估脑胶质瘤负担:一种用于全自动容积和二维测量的深度学习算法。

Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.

Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Neuro Oncol. 2019 Nov 4;21(11):1412-1422. doi: 10.1093/neuonc/noz106.


DOI:10.1093/neuonc/noz106
PMID:31190077
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6827825/
Abstract

BACKGROUND: Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitating tumor volumes as well as the product of maximum bidimensional diameters according to the Response Assessment in Neuro-Oncology (RANO) criteria (AutoRANO). METHODS: Two cohorts of patients were used for this study. One consisted of 843 preoperative MRIs from 843 patients with low- or high-grade gliomas from 4 institutions and the second consisted of 713 longitudinal postoperative MRI visits from 54 patients with newly diagnosed glioblastomas (each with 2 pretreatment "baseline" MRIs) from 1 institution. RESULTS: The automatically generated FLAIR hyperintensity volume, contrast-enhancing tumor volume, and AutoRANO were highly repeatable for the double-baseline visits, with an intraclass correlation coefficient (ICC) of 0.986, 0.991, and 0.977, respectively, on the cohort of postoperative GBM patients. Furthermore, there was high agreement between manually and automatically measured tumor volumes, with ICC values of 0.915, 0.924, and 0.965 for preoperative FLAIR hyperintensity, postoperative FLAIR hyperintensity, and postoperative contrast-enhancing tumor volumes, respectively. Lastly, the ICCs for comparing manually and automatically derived longitudinal changes in tumor burden were 0.917, 0.966, and 0.850 for FLAIR hyperintensity volume, contrast-enhancing tumor volume, and RANO measures, respectively. CONCLUSIONS: Our automated algorithm demonstrates potential utility for evaluating tumor burden in complex posttreatment settings, although further validation in multicenter clinical trials will be needed prior to widespread implementation.

摘要

背景:通过 MRI 对脑胶质瘤瘤负荷进行纵向测量是治疗反应评估的基础。在这项研究中,我们开发了一种深度学习算法,该算法可自动分割异常的液体衰减反转恢复(FLAIR)高信号和增强肿瘤,根据神经肿瘤学反应评估(RANO)标准(AutoRANO)定量测量肿瘤体积以及最大二维直径的乘积。

方法:本研究使用了两个患者队列。一个队列由来自 4 个机构的 843 名低级别或高级别脑胶质瘤患者的 843 次术前 MRI 组成,另一个队列由来自 1 个机构的 54 名新诊断为胶质母细胞瘤患者的 713 次纵向术后 MRI 随访组成(每个患者有 2 次预处理“基线”MRI)。

结果:在接受新诊断胶质母细胞瘤治疗的患者队列中,自动生成的 FLAIR 高信号体积、增强肿瘤体积和 AutoRANO 在双基线检查中具有高度的可重复性,其组内相关系数(ICC)分别为 0.986、0.991 和 0.977。此外,手动和自动测量的肿瘤体积之间具有高度一致性,术前 FLAIR 高信号、术后 FLAIR 高信号和术后增强肿瘤体积的 ICC 值分别为 0.915、0.924 和 0.965。最后,比较手动和自动测量肿瘤负荷纵向变化的 ICC 值分别为 0.917、0.966 和 0.850,用于 FLAIR 高信号体积、增强肿瘤体积和 RANO 测量。

结论:我们的自动算法在复杂的治疗后环境中评估肿瘤负荷具有潜在的应用价值,但在广泛实施之前,还需要在多中心临床试验中进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/29affc0f6d65/noz106f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/caeb02b1bf75/noz106f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/e0475d7b05f5/noz106f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/d77aba16da8b/noz106f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/9aebc4d1d84c/noz106f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/0226fb0287d6/noz106f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/29affc0f6d65/noz106f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/caeb02b1bf75/noz106f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/e0475d7b05f5/noz106f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/d77aba16da8b/noz106f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/9aebc4d1d84c/noz106f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/0226fb0287d6/noz106f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba2/6827825/29affc0f6d65/noz106f0006.jpg

相似文献

[1]
Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement.

Neuro Oncol. 2019-11-4

[2]
Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors.

Neuro Oncol. 2022-2-1

[3]
Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study.

Lancet Oncol. 2019-4-2

[4]
The Value of Intraoperative and Early Postoperative Magnetic Resonance Imaging in Low-Grade Glioma Surgery: A Retrospective Study.

World Neurosurg. 2016-9

[5]
Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients.

Comput Biol Med. 2023-3

[6]
Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.

Eur Radiol. 2019-10-24

[7]
How Reliable Are Volumetric Techniques for High-Grade Gliomas? A Comparison Study of Different Available Tools.

Neurosurgery. 2020-11-16

[8]
DeepEOR: automated perioperative volumetric assessment of variable grade gliomas using deep learning.

Acta Neurochir (Wien). 2023-2

[9]
Longitudinal restriction spectrum imaging is resistant to pseudoresponse in patients with high-grade gliomas treated with bevacizumab.

AJNR Am J Neuroradiol. 2013-4-11

[10]
Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.

Lancet Digit Health. 2021-12

引用本文的文献

[1]
Establishment and evaluation of an automatic multi?sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU?Net deep learning network method.

Oncol Lett. 2025-5-9

[2]
Deep learning in neurosurgery: a systematic literature review with a structured analysis of applications across subspecialties.

Front Neurol. 2025-4-16

[3]
A review of deep learning for brain tumor analysis in MRI.

NPJ Precis Oncol. 2025-1-3

[4]
Development and Evaluation of Automated Artificial Intelligence-Based Brain Tumor Response Assessment in Patients with Glioblastoma.

AJNR Am J Neuroradiol. 2025-5-2

[5]
Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 1: review of current advancements.

Lancet Oncol. 2024-11

[6]
Dilated multi-scale residual attention (DMRA) U-Net: three-dimensional (3D) dilated multi-scale residual attention U-Net for brain tumor segmentation.

Quant Imaging Med Surg. 2024-10-1

[7]
Repurposing the Public BraTS Dataset for Postoperative Brain Tumour Treatment Response Monitoring.

Tomography. 2024-9-1

[8]
Segmentation of pre- and posttreatment diffuse glioma tissue subregions including resection cavities.

Neurooncol Adv. 2024-8-16

[9]
Longitudinal deep neural networks for assessing metastatic brain cancer on a large open benchmark.

Nat Commun. 2024-9-17

[10]
Deep Learning for MRI Segmentation and Molecular Subtyping in Glioblastoma: Critical Aspects from an Emerging Field.

Biomedicines. 2024-8-16

本文引用的文献

[1]
DeepNeuro: an open-source deep learning toolbox for neuroimaging.

Neuroinformatics. 2021-1

[2]
Interreader Variability of Dynamic Contrast-enhanced MRI of Recurrent Glioblastoma: The Multicenter ACRIN 6677/RTOG 0625 Study.

Radiology. 2018-11-27

[3]
Probing tumor microenvironment in patients with newly diagnosed glioblastoma during chemoradiation and adjuvant temozolomide with functional MRI.

Sci Rep. 2018-11-20

[4]
Residual Convolutional Neural Network for the Determination of Status in Low- and High-Grade Gliomas from MR Imaging.

Clin Cancer Res. 2017-11-22

[5]
Imaging Correlates of Adult Glioma Genotypes.

Radiology. 2017-8

[6]
Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab.

Neuro Oncol. 2017-11-29

[7]
MRI features predict survival and molecular markers in diffuse lower-grade gliomas.

Neuro Oncol. 2017-6-1

[8]
Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials.

Neurotherapeutics. 2017-4

[9]
Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning.

Tomography. 2016-12

[10]
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.

Med Image Anal. 2016-10-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索