Suppr超能文献

使用3D nnU-Net自动量化腹主动脉钙化:一种评估腹主动脉瘤破裂风险的新方法。

Automated quantification of abdominal aortic calcification using 3D nnU-Net: a novel approach to assess AAA rupture risk.

作者信息

Luo Yuan-Lin, Liu Yi-Fan, Huang Zhi, Wang Chu, Zhang Ling-Yue, Huang Shui-Chuan

机构信息

Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.

Department of Vascular Surgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, China.

出版信息

BMC Med Imaging. 2025 Sep 2;25(1):366. doi: 10.1186/s12880-025-01911-x.

Abstract

BACKGROUND

Abdominal aortic aneurysms (AAA) pose a serious rupture risk, heightened by aortic calcification. Traditional calcification scoring methods are slow and require expertise. This study aims to construct a convolutional neural network (nnU-Net) model for automatic quantification and segmentation of abdominal aortic calcification from a single CTA scan.

METHODS

This retrospective study included 100 patients who underwent abdominal aortic CTA between January 2018 and October 2023, meeting specific inclusion criteria. Vessel and calcification segmentation were manually scored by two physicians, and an nnU-Net deep learning model was developed to automate calcification measurement. Model performance was assessed using Dice scores. Agreement between manual and model-based scoring was assessed using Spearman rank correlation and Bland-Altman analysis.

RESULTS

The nnU-Net model achieved median Dice scores of 93.60% for blood vessels and 81.06% for calcification. Average Dice scores were 92.37 ± 4.87% for blood vessel segmentation and 81.03 ± 5.11% for calcified plaque. The model's Agatston scores correlated closely with manual scores (Spearman's ρ = 0.969), with a mean difference of -229.51 (95% limits of agreement: -6003.92 to 5544.90). The model's evaluation time was also shorter than manual scoring (112 ± 4.4 s vs. 3796 ± 6.6 s, p < 0.001).

CONCLUSION

The nnU-Net-based model shows potential as an automated tool for accurately segmenting and quantifying abdominal aortic calcification, offering comparable results to manual scoring with significantly reduced evaluation time. This approach may assist in more efficient assessment of AAA rupture risk, supporting clinical decision-making in patient management.

摘要

背景

腹主动脉瘤(AAA)具有严重的破裂风险,主动脉钙化会加剧这种风险。传统的钙化评分方法速度慢且需要专业知识。本研究旨在构建一个卷积神经网络(nnU-Net)模型,用于从单次CTA扫描中自动量化和分割腹主动脉钙化。

方法

这项回顾性研究纳入了2018年1月至2023年10月期间接受腹主动脉CTA检查且符合特定纳入标准的100例患者。由两名医生对手动血管和钙化分割进行评分,并开发了一个nnU-Net深度学习模型以实现钙化测量的自动化。使用Dice分数评估模型性能。使用Spearman等级相关性和Bland-Altman分析评估手动评分与基于模型评分之间的一致性。

结果

nnU-Net模型在血管分割方面的中位数Dice分数为93.60%,在钙化分割方面为81.06%。血管分割的平均Dice分数为92.37±4.87%,钙化斑块分割为81.03±5.11%。该模型的阿加斯顿分数与手动评分密切相关(Spearman氏ρ=0.969),平均差异为-229.51(95%一致性界限:-6003.92至5544.90)。该模型的评估时间也比手动评分短(112±4.4秒对3796±6.6秒,p<0.001)。

结论

基于nnU-Net的模型显示出作为一种自动工具准确分割和量化腹主动脉钙化的潜力,其结果与手动评分相当,但评估时间显著缩短。这种方法可能有助于更有效地评估AAA破裂风险,支持患者管理中的临床决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验