University Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, 38700, La Tronche, France.
The National Natural History Collections, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
J Mol Evol. 2019 Jul;87(4-6):152-174. doi: 10.1007/s00239-019-09892-6. Epub 2019 Apr 5.
Theoretical minimal RNA rings were designed to mimick life's primordial RNAs by forming stem-loop hairpins and coding once for each of the 20 amino acids, a start and a stop codon. At most 25 22-nucleotide long RNA rings follow these criteria. These align well with a consensus tRNA sequence, predicting for each RNA ring an anticodon and an associated cognate amino acid. Hypotheses on cognate amino acid order of inclusion in the genetic code produce evolutionary ranks for theoretical RNA rings. This evolutionary hypothesis predicts that pieces of RNA rings with more ancient cognate amino acid should be more frequent in modern genes than those from RNA rings with late cognate amino acids. Analyses of genes for tRNA synthetases, among the most ancient proteins, from archaeal, bacterial, eukaryote and viral superkingdoms overall confirm these predictions, least for tRNA synthetases with early cognate amino acids and for the neogene-enriched genome of the giant virus Tupanvirus. Hence early tRNA synthetase genes and late RNA rings evolved separately. Results indicate that RNA rings and tRNA synthetases with the same cognate amino acid are less separated for relatively recent cognate amino acids, suggesting that over evolutionary time the components of the molecular apparatus became more integrated, perhaps in cell-like membrane-bound systems. Results confirm that theoretical considerations in the design of minimal RNA rings recreated RNAs close to the actual primordial RNA population that produce genes by accretion, and confirm the hypothesis of homology of minimal RNA rings with tRNAs and their proto-tRNA status.
理论最小 RNA 环通过形成茎环发夹并为每个 20 种氨基酸中的每一种编码一次、一个起始密码子和一个终止密码子来模拟生命的原始 RNA。最多有 25 个 22 个核苷酸长的 RNA 环符合这些标准。这些与共识 tRNA 序列很好地对齐,预测每个 RNA 环的反密码子和相关的对应氨基酸。关于包含在遗传密码中的对应氨基酸顺序的假设产生了理论 RNA 环的进化等级。这个进化假设预测,具有更古老对应氨基酸的 RNA 环片段在现代基因中应该比具有晚期对应氨基酸的 RNA 环片段更频繁。对来自古细菌、细菌、真核生物和病毒超界的 tRNA 合成酶基因(最古老的蛋白质之一)的分析总体上证实了这些预测,至少对于具有早期对应氨基酸的 tRNA 合成酶和富含新基因的巨型病毒 Tupanvirus 的基因组来说是如此。因此,早期的 tRNA 合成酶基因和晚期的 RNA 环是分别进化的。结果表明,对于相对较近的对应氨基酸,具有相同对应氨基酸的 RNA 环和 tRNA 合成酶的分离程度较低,这表明在进化过程中,分子装置的组成部分变得更加整合,也许在类似细胞的膜结合系统中。结果证实,最小 RNA 环设计中的理论考虑因素重现了与通过积累产生基因的实际原始 RNA 群体接近的 RNA,并证实了最小 RNA 环与 tRNA 及其原 tRNA 状态同源性的假设。