Suppr超能文献

保持循环进行:降低 LDL-C 的新方法。

Keep recycling going: New approaches to reduce LDL-C.

机构信息

Fox Chase Cancer Center, 333 Cotman Ave, Philadelphia 19111, United States.

Fox Chase Cancer Center, 333 Cotman Ave, Philadelphia 19111, United States; Holy Family University, Frankford Ave, Philadelphia 19114, United States.

出版信息

Biochem Pharmacol. 2019 Jun;164:336-341. doi: 10.1016/j.bcp.2019.04.003. Epub 2019 Apr 4.

Abstract

Hypercholesterolemia represents a leading cause in the development of atherosclerotic plaques, increasing the risk for ACVS. It actually counts as a major cause of cardiovascular disease etiopathogenesis. The causes of hypercholesterolemia are multifactorial, spanning from genetic constitution, age, sex, to sedentary lifestyle and diets rich in sugars and lipids. Although dietary restriction in saturated fats, increased exercise, and other modification in lifestyle represent a first-line approach to treat very initial stages in hypercholesterolemia, most patients will require the addition of pharmacological agents. Pharmacological approaches include inhibition of cholesterol synthesis, decreased fat absorption from the GI tract, and increased degradation of FA. These strategies present a series of side effects, low therapeutic efficiency in some patients, and reduced tolerability. One of the major goals in treatment for hypercholesterolemia is to decrease the levels of low density lipoproteins (LDL), while maintaining those of high density lipoproteins (HDL). LDL particles contain about 80% of lipids, most of it cholesterol and cholesteryl esters, and 20% of the ApoB-100 protein. LDL carries cholesterol to the tissues, to be incorporated to biological membranes, or to be transformed to steroids. Excess of LDL translates into increased levels of circulating cholesterol particles and accumulation in certain tissues, especially vascular tissue, initiating a fatty streak, which may evolve to an atheroma, causing a series of cardiovascular problems, including impaired circulation, high blood pressure, increased cardiac workload, and coronary artery disease. It is essential to prevent LDL accumulation into the bloodstream to avoid the formation of these fatty streaks and the initiation of a cascade that will lead to the development of atherosclerosis. In healthy individuals. Under physiological conditions, LDL is effectively removed from circulation through receptor-mediated endocytosis. LDL clearance involves binding to its receptor, LDLR, which enables the internalization of the LDL particle and drives its degradation in lysosomes. Once the LDL particle is degraded, the free receptor recycles to the plasma membrane, and captures new LDL particles. Adequate levels of LDLR are essential to remove the excess of cholesterol-laden LDL. Proprotein convertase, subtilysin kexin type 9 (PCSK-9), expressed in liver and intestine, binds to LDLR, and internalized. Once inside the cell, PCSK-9 catalyzes the proteolysis of LDLR, preventing its recycling to the cell surface, and effectively decreasing the number of LDLR, notoriously decreasing the ability to clear LDL from circulation. Levels of PCSK-9 varies with age, gender, and levels of insulin, glucose, and triglycerides. Loss-of-function mutations in PCSK-9 gene invariably translates into lower levels of LDL, and decreased risk of developing coronary artery disease. Conversely, increased activity or expression of this enzyme leads to hypercholesterolemia. Inhibition of PCSK9 has proven to be successful in decreasing LDL levels and risk of the development of hypercholesterolemia with its associated higher risk for ASCVD. Patient with gain-of-function mutations in the PCSK9 undoubtedly benefit from therapies based on PCSK-9 inhibitors. However, millions of patients show statin intolerance, or cannot be efficiently controlled by statins alone- the most prevalent therapy for hypeprcholesterolemia. This commentary will evaluate the possibilities, caveats and future directions in the treatment of hypercholesterolemia, and therapies with combination of drugs.

摘要

高胆固醇血症是动脉粥样硬化斑块形成的主要原因,增加了 ACSV 的风险。它实际上是心血管疾病发病机制的主要原因之一。高胆固醇血症的病因是多因素的,包括遗传构成、年龄、性别、久坐的生活方式以及富含糖和脂肪的饮食。尽管限制饱和脂肪饮食、增加运动和其他生活方式的改变是治疗高胆固醇血症早期阶段的一线方法,但大多数患者需要添加药物治疗。药物治疗方法包括抑制胆固醇合成、减少胃肠道脂肪吸收和增加脂肪酸降解。这些策略存在一系列副作用,在某些患者中治疗效果低,耐受性降低。高胆固醇血症治疗的主要目标之一是降低低密度脂蛋白(LDL)水平,同时维持高密度脂蛋白(HDL)水平。LDL 颗粒含有约 80%的脂质,其中大部分是胆固醇和胆固醇酯,以及 20%的载脂蛋白 B-100 蛋白。LDL 将胆固醇输送到组织中,被纳入生物膜,或转化为类固醇。LDL 过量会导致循环胆固醇颗粒水平升高,并在某些组织中积累,特别是血管组织,引发脂肪条纹,进而发展为动脉粥样硬化,导致一系列心血管问题,包括循环受损、高血压、心脏工作量增加和冠状动脉疾病。防止 LDL 积累到血液中以避免形成这些脂肪条纹并启动导致动脉粥样硬化发展的级联反应至关重要。在健康个体中,在生理条件下,LDL 通过受体介导的内吞作用从循环中有效清除。LDL 的清除涉及与 LDLR 结合,LDLR 使 LDL 颗粒内化,并驱动其在溶酶体中降解。一旦 LDL 颗粒被降解,游离受体就会循环回到质膜,并捕获新的 LDL 颗粒。足够水平的 LDLR 对于去除载脂蛋白 B-100 蛋白过多的胆固醇负荷 LDL 颗粒至关重要。前蛋白转化酶枯草溶菌素 kexin9 型(PCSK9)在肝脏和肠道中表达,与 LDLR 结合并内化。一旦进入细胞,PCSK9 就会催化 LDLR 的蛋白水解,阻止其循环回到细胞表面,从而有效地减少 LDLR 的数量,显著降低从循环中清除 LDL 的能力。PCSK9 的水平随年龄、性别和胰岛素、葡萄糖和甘油三酯的水平而变化。PCSK9 基因的功能丧失性突变会导致 LDL 水平降低,患冠状动脉疾病的风险降低。相反,该酶的活性或表达增加会导致高胆固醇血症。PCSK9 的抑制已被证明可成功降低 LDL 水平和高胆固醇血症发展的风险及其相关的 ASCVD 风险增加。携带 PCSK9 基因获得性功能突变的患者无疑受益于基于 PCSK9 抑制剂的治疗。然而,数以百万计的患者对他汀类药物不耐受,或者不能仅通过他汀类药物有效控制——这是治疗高胆固醇血症最常见的方法。本评论将评估治疗高胆固醇血症的可能性、注意事项和未来方向,以及联合药物治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验