Suppr超能文献

基于 Baeyer-Villiger 单加氧酶的大肠杆菌生物催化剂的多层次工程化,用于从油酸生产 C9 化学品。

Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid.

机构信息

Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.

Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.

出版信息

Metab Eng. 2019 Jul;54:137-144. doi: 10.1016/j.ymben.2019.03.012. Epub 2019 Apr 4.

Abstract

Whole-cell biotransformation is one of the promising alternative approaches to microbial fermentation for producing high-value chemicals. Baeyer-Villiger monooxygenase (BVMO)-based Escherichia coli biocatalysts have been engineered to produce industrially relevant C9 chemicals, such as n-nonanoic acid and 9-hydroxynonanoic acid, from a renewable long-chain fatty acid. The key enzyme in the biotransformation pathway (i.e., BVMO from Pseudomonans putida KT2440) was first engineered, using structure modeling-based design, to improve oxidative and thermal stabilities. Using a stable and tunable plasmid (STAPL) system, E. coli host cells were engineered to have increased plasmid stability and homogeneity of the recombinant E. coli population, as well as to optimize the level of BVMO expression. Multi-level engineering of the key enzyme in host cells, allowed recombinant E. coli expressing a fatty acid double-bond hydratase, a long-chain secondary alcohol dehydrogenase, and the engineered BVMO from P. putida KT2440 (i.e., E6BVMO_C302L/M340L), to ultimately produce C9 chemicals (i.e., n-nonanoic acid and 9-hydroxynonanoic acid) from oleic acid, with a yield of up to 6 mmoL/g dry cells. This yield was 2.4-fold greater than the yield in the control strain before engineering. Therefore, this study will contribute to the development of improved processes for the biosynthesis of industrially relevant medium chain fatty acids via whole-cell biocatalysis.

摘要

全细胞生物转化是微生物发酵生产高价值化学品的有前途的替代方法之一。已经对基于 Baeyer-Villiger 单加氧酶 (BVMO) 的大肠杆菌生物催化剂进行了工程改造,以从可再生长链脂肪酸生产工业相关的 C9 化学品,如壬酸和 9-羟基壬酸。生物转化途径中的关键酶(即来自恶臭假单胞菌 KT2440 的 BVMO)首先通过基于结构建模的设计进行工程改造,以提高氧化和热稳定性。使用稳定且可调节的质粒 (STAPL) 系统,对大肠杆菌宿主细胞进行工程改造,以提高质粒稳定性和重组大肠杆菌种群的均一性,并优化 BVMO 的表达水平。对宿主细胞中的关键酶进行多层次工程改造,使表达脂肪酸双键水合酶、长链仲醇脱氢酶和来自恶臭假单胞菌 KT2440 的工程化 BVMO(即 E6BVMO_C302L/M340L)的重组大肠杆菌最终能够从油酸生产 C9 化学品(即壬酸和 9-羟基壬酸),产量高达 6mmol/g 干细胞。该产量比工程改造前对照菌株的产量高 2.4 倍。因此,本研究将有助于通过全细胞生物催化开发改进的工业相关中链脂肪酸生物合成工艺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验