Suppr超能文献

集团微扰理论。四、能量和分子性质的集团微扰级数的收敛性。

Cluster perturbation theory. IV. Convergence of cluster perturbation series for energies and molecular properties.

机构信息

Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA.

Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.

出版信息

J Chem Phys. 2019 Apr 7;150(13):134111. doi: 10.1063/1.5053622.

Abstract

The theoretical foundation has been developed for establishing whether cluster perturbation (CP) series for the energy, molecular properties, and excitation energies are convergent or divergent and for using a two-state model to describe the convergence rate and convergence patterns of the higher-order terms in the CP series. To establish whether the perturbation series are convergent or divergent, a fictitious system is introduced, for which the perturbation is multiplied by a complex scaling parameter z. The requirement for convergent perturbation series becomes that the energy or molecular property, including an excitation energy, for the fictitious system is an analytic, algebraic function of z that has no singularities when the norm |z| is smaller than one. Examples of CP series for the energy and molecular properties, including excitation energies, are also presented, and the two-state model is used for the interpretation of the convergence rate and the convergence patterns of the higher-order terms in these series. The calculations show that the perturbation series effectively become a two-state model at higher orders.

摘要

已经为建立簇微扰(CP)系列的能量、分子性质和激发能是否收敛或发散以及使用二态模型来描述 CP 系列的更高阶项的收敛速度和收敛模式奠定了理论基础。为了确定微扰级数是否收敛,引入了一个虚构的系统,其中微扰乘以一个复标度参数 z。收敛微扰级数的要求是,对于虚构系统,能量或分子性质(包括激发能)是 z 的解析、代数函数,当范数 |z|小于 1 时,它没有奇点。还给出了能量和分子性质(包括激发能)的 CP 级数的示例,并使用二态模型来解释这些级数中更高阶项的收敛速度和收敛模式。计算表明,在更高阶,微扰级数有效地成为二态模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验