Department of Computer Science & Engineering, Swami Vivekananda Institute of Science and Technology, Dakshin Gobindapur, P.S.: Sonarpur, Kolkata 700 145, West Bengal, India.
Department of Computer Science & Engineering, Maulana Abul Kalam Azad University of Technology, BF-142, Sector 1, Salt Lake City, Kolkata 700 064, West Bengal, India.
IET Nanobiotechnol. 2019 Feb;13(1):77-83. doi: 10.1049/iet-nbt.2018.5027.
Molecular logic gate has been proposed using single-strand DNA (ssDNA) consisting of basic four nucleobases. In this study, density functional theory and non-equilibrium Green's function based first principle approach is applied to investigate the electronic transmission characteristics of ssDNA chain. The heavily hydrogen-doped-ssDNA (H-ssDNA) chain is connected with gold electrode to achieve enhanced quantum-ballistic transmission along 〈1 1 1〉 direction. Logic gates OR, Ex-OR, NXOR have been implemented using this analytical model of H-ssDNA device. Enhanced logic properties have been observed for ssDNA after H adsorption due to improved electronic transmission. Dense electron cloud is considered as logic 'high' (1) output in presence of hydrogen molecule and on the contrary sparse cloud indicate logic 'low' (0) in the absence of hydrogen molecule. Device current is significantly increased from 0.2 nA to 2.4 µA (approx.) when ssDNA chain is heavily doped with hydrogen molecule. The current-voltage characteristics confirm the formation of various Boolean logic gate operations.
使用由基本的四个碱基组成的单链 DNA(ssDNA)已经提出了分子逻辑门。在这项研究中,应用了基于密度泛函理论和非平衡格林函数的第一性原理方法来研究 ssDNA 链的电子传输特性。将大量掺杂氢的 ssDNA(H-ssDNA)链与金电极相连,以实现沿〈111〉方向的增强量子弹道传输。使用这种 H-ssDNA 器件的分析模型,实现了逻辑门 OR、Ex-OR、NXOR。由于电子传输的改善,H 吸附后 ssDNA 的逻辑性能得到了增强。在存在氢分子的情况下,密集的电子云被认为是逻辑“高”(1)输出,而在没有氢分子的情况下,稀疏的电子云则表示逻辑“低”(0)。当 ssDNA 链被大量掺杂氢分子时,器件电流从 0.2nA 显著增加到 2.4µA(约)。电流-电压特性证实了各种布尔逻辑门操作的形成。