Suppr超能文献

基于氢原子掺杂单链 DNA 的逻辑设计初探。

First principle approach towards logic design using hydrogen-doped single-strand DNA.

机构信息

Department of Computer Science & Engineering, Swami Vivekananda Institute of Science and Technology, Dakshin Gobindapur, P.S.: Sonarpur, Kolkata 700 145, West Bengal, India.

Department of Computer Science & Engineering, Maulana Abul Kalam Azad University of Technology, BF-142, Sector 1, Salt Lake City, Kolkata 700 064, West Bengal, India.

出版信息

IET Nanobiotechnol. 2019 Feb;13(1):77-83. doi: 10.1049/iet-nbt.2018.5027.

Abstract

Molecular logic gate has been proposed using single-strand DNA (ssDNA) consisting of basic four nucleobases. In this study, density functional theory and non-equilibrium Green's function based first principle approach is applied to investigate the electronic transmission characteristics of ssDNA chain. The heavily hydrogen-doped-ssDNA (H-ssDNA) chain is connected with gold electrode to achieve enhanced quantum-ballistic transmission along 〈1 1 1〉 direction. Logic gates OR, Ex-OR, NXOR have been implemented using this analytical model of H-ssDNA device. Enhanced logic properties have been observed for ssDNA after H adsorption due to improved electronic transmission. Dense electron cloud is considered as logic 'high' (1) output in presence of hydrogen molecule and on the contrary sparse cloud indicate logic 'low' (0) in the absence of hydrogen molecule. Device current is significantly increased from 0.2 nA to 2.4 µA (approx.) when ssDNA chain is heavily doped with hydrogen molecule. The current-voltage characteristics confirm the formation of various Boolean logic gate operations.

摘要

使用由基本的四个碱基组成的单链 DNA(ssDNA)已经提出了分子逻辑门。在这项研究中,应用了基于密度泛函理论和非平衡格林函数的第一性原理方法来研究 ssDNA 链的电子传输特性。将大量掺杂氢的 ssDNA(H-ssDNA)链与金电极相连,以实现沿〈111〉方向的增强量子弹道传输。使用这种 H-ssDNA 器件的分析模型,实现了逻辑门 OR、Ex-OR、NXOR。由于电子传输的改善,H 吸附后 ssDNA 的逻辑性能得到了增强。在存在氢分子的情况下,密集的电子云被认为是逻辑“高”(1)输出,而在没有氢分子的情况下,稀疏的电子云则表示逻辑“低”(0)。当 ssDNA 链被大量掺杂氢分子时,器件电流从 0.2nA 显著增加到 2.4µA(约)。电流-电压特性证实了各种布尔逻辑门操作的形成。

相似文献

1
First principle approach towards logic design using hydrogen-doped single-strand DNA.
IET Nanobiotechnol. 2019 Feb;13(1):77-83. doi: 10.1049/iet-nbt.2018.5027.
3
Not-XOR (NXOR) Logic Gate Realized with Enzyme-Catalyzed Reactions: Optical and Electrochemical Signal Transduction.
Chemphyschem. 2019 Aug 16;20(16):2082-2092. doi: 10.1002/cphc.201900528. Epub 2019 Jul 10.
4
Versatile and Programmable DNA Logic Gates on Universal and Label-Free Homogeneous Electrochemical Platform.
Anal Chem. 2016 Oct 4;88(19):9691-9698. doi: 10.1021/acs.analchem.6b02584. Epub 2016 Sep 14.
5
High-efficiency and integrable DNA arithmetic and logic system based on strand displacement synthesis.
Nat Commun. 2019 Nov 26;10(1):5390. doi: 10.1038/s41467-019-13310-2.
6
Tri-state logic computation by activating DNA origami chains.
Nanoscale. 2024 Jun 27;16(25):11991-11998. doi: 10.1039/d3nr06010a.
7
Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase.
Nat Nanotechnol. 2019 Nov;14(11):1075-1081. doi: 10.1038/s41565-019-0544-5. Epub 2019 Sep 23.
8
Design of a DNA electronic logic gate (INHIBIT gate) with an assaying application for Ag+ and cysteine.
Chem Commun (Camb). 2011 Aug 28;47(32):9080-2. doi: 10.1039/c1cc12734a. Epub 2011 Jul 12.
9
DNA detection using origami paper analytical devices.
Anal Chem. 2013 Oct 15;85(20):9713-20. doi: 10.1021/ac402118a. Epub 2013 Sep 26.
10
Multifunctional DNA-based biomemory device consisting of ssDNA/Cu heterolayers.
Biosens Bioelectron. 2011 Jan 15;26(5):2304-10. doi: 10.1016/j.bios.2010.09.057. Epub 2010 Oct 8.

引用本文的文献

1
Electrically Doped Nanoscale Devices Using First-Principle Approach: A Comprehensive Survey.
Nanoscale Res Lett. 2021 Jan 29;16(1):20. doi: 10.1186/s11671-020-03467-x.

本文引用的文献

1
Router design for nano-communication using actin quantum cellular automata.
IET Nanobiotechnol. 2020 Sep;14(7):609-616. doi: 10.1049/iet-nbt.2020.0186.
2
Atomic scale modeling of electrically doped p-i-n FET from adenine based single wall nanotube.
J Mol Graph Model. 2017 Sep;76:118-127. doi: 10.1016/j.jmgm.2017.06.024. Epub 2017 Jul 10.
3
DNA-based visual majority logic gate with one-vote veto function.
Chem Sci. 2015 Mar 1;6(3):1973-1978. doi: 10.1039/c4sc03495c. Epub 2015 Jan 7.
4
Design of a DNA-based reversible arithmetic and logic unit.
IET Nanobiotechnol. 2015 Aug;9(4):226-38. doi: 10.1049/iet-nbt.2014.0056.
5
Self-assembly: a review of scope and applications.
IET Nanobiotechnol. 2015 Jun;9(3):122-35. doi: 10.1049/iet-nbt.2014.0020.
7
Molecular logic gates on DNA origami nanostructures for microRNA diagnostics.
Anal Chem. 2014 Feb 18;86(4):1932-6. doi: 10.1021/ac403661z. Epub 2014 Jan 27.
8
High speed capacitor-inverter based carbon nanotube full adder.
Nanoscale Res Lett. 2010 Mar 18;5(5):859-62. doi: 10.1007/s11671-010-9575-4.
9
Programming biomolecular self-assembly pathways.
Nature. 2008 Jan 17;451(7176):318-22. doi: 10.1038/nature06451.
10
DNA logic gates.
J Am Chem Soc. 2004 Aug 4;126(30):9458-63. doi: 10.1021/ja047628k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验