Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
The Institute of Advanced Studies, Wuhan University, Wuhan, 430072, China.
Nat Commun. 2019 Nov 26;10(1):5390. doi: 10.1038/s41467-019-13310-2.
Powerful information processing and ubiquitous computing are crucial for all machines and living organisms. The Watson-Crick base-pairing principle endows DNA with excellent recognition and assembly abilities, which facilitates the design of DNA computers for achieving intelligent systems. However, current DNA computational systems are always constrained by poor integration efficiency, complicated device structures or limited computational functions. Here, we show a DNA arithmetic logic unit (ALU) consisting of elemental DNA logic gates using polymerase-mediated strand displacement. The use of an enzyme resulted in highly efficient logic gates suitable for multiple and cascaded computation. Based on our basic single-rail DNA configuration, additional combined logic gates (e.g., a full adder and a 4:1 multiplexer) have been constructed. Finally, we integrate the gates and assemble the crucial ALU. Our strategy provides a facile strategy for assembling a large-scale complex DNA computer system, highlighting the great potential for programming the molecular behaviors of complicated biosystems.
强大的信息处理和无处不在的计算对于所有机器和生物都是至关重要的。沃森-克里克碱基配对原则赋予 DNA 出色的识别和组装能力,这有助于设计用于实现智能系统的 DNA 计算机。然而,当前的 DNA 计算系统总是受到较差的集成效率、复杂的器件结构或有限的计算功能的限制。在这里,我们展示了一种由聚合酶介导的链置换作用的基本 DNA 逻辑门组成的 DNA 算术逻辑单元 (ALU)。酶的使用产生了适用于多种和级联计算的高效逻辑门。基于我们的基本单轨 DNA 结构,已经构建了其他组合逻辑门(例如,全加器和 4:1 多路复用器)。最后,我们集成了门并组装了关键的 ALU。我们的策略为组装大规模复杂的 DNA 计算机系统提供了一种简便的策略,突出了对复杂生物系统的分子行为进行编程的巨大潜力。