Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.
College of Life Sciences, Anhui Normal University, Wuhu, China.
J Exp Zool B Mol Dev Evol. 2019 May;332(3-4):69-80. doi: 10.1002/jez.b.22851. Epub 2019 Apr 9.
The Chinese concave-eared torrent frog (Odorrana tormota) is typically sexually dimorphic. Females are significantly less common than males in the wild. Until now, the molecular mechanisms of reproduction and sex differentiation of frogs remain unclear. Here, we integrated mRNA and microRNA (miRNA) expression profiles to reveal the molecular mechanisms of reproduction and sex differentiation in O. tormota. We identified 234 differentially expressed miRNAs (DEMs) and 18,551 differentially expressed transcripts. Of these, 12,053 mRNAs and 64 miRNAs were upregulated in testes, and 6,498 mRNAs and 170 miRNAs were upregulated in ovaries. Integrated analysis of the miRNA and mRNA expression profiles predicted 75,602 potential miRNA-mRNA interaction sites, with 42,065 negative miRNA-mRNA interactions. We found 36 differentially expressed genes (DEGs) related to reproduction and sex differentiation, of which 15 DEGs formed 92 negative miRNA-mRNA interactions with 34 known DEMs. Thus, miRNAs may play other important roles in O. tormota. Furthermore, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed reproductive-related processes, such as the gonadotropinreleasing hormone signaling pathway and ovarian steroidogenesis. Based on functional annotation and the literature, the retinoic acid signaling pathway, the SOX9-AMH pathway, and the process of spermatogenesis may be involved in the molecular mechanisms of reproduction and sex differentiation in O. tormota, and may be regulated by miRNAs. The miRNA-mRNA pairs described may provide further understanding of the regulatory mechanisms associated with reproduction and sex differentiation, and the molecular mechanism of reproduction in O. tormota.
中华蟾蜍(Odorrana tormota)通常具有性二态性。在野外,雌性比雄性少见得多。到目前为止,青蛙的繁殖和性别分化的分子机制仍不清楚。在这里,我们整合了 mRNA 和 microRNA(miRNA)表达谱,以揭示 O. tormota 繁殖和性别分化的分子机制。我们鉴定出 234 个差异表达的 miRNA(DEMs)和 18551 个差异表达的转录本。其中,12053 个 mRNAs 和 64 个 miRNAs 在睾丸中上调,6498 个 mRNAs 和 170 个 miRNAs 在卵巢中上调。miRNA 和 mRNA 表达谱的综合分析预测了 75602 个潜在的 miRNA-mRNA 相互作用位点,其中 42065 个为负 miRNA-mRNA 相互作用。我们发现了 36 个与繁殖和性别分化相关的差异表达基因(DEGs),其中 15 个 DEGs 与 34 个已知的 DEM 形成了 92 个负 miRNA-mRNA 相互作用。因此,miRNAs 可能在 O. tormota 中发挥其他重要作用。此外,基因本体论富集和京都基因与基因组百科全书通路分析显示了与繁殖相关的过程,如促性腺激素释放激素信号通路和卵巢甾体生成。基于功能注释和文献,视黄酸信号通路、SOX9-AMH 通路和精子发生过程可能参与 O. tormota 的繁殖和性别分化的分子机制,并可能受到 miRNAs 的调节。所描述的 miRNA-mRNA 对可能为进一步了解与繁殖和性别分化相关的调控机制以及 O. tormota 的繁殖分子机制提供帮助。