von Aspern Natascha, Diddens Diddo, Kobayashi Takeshi, Börner Markus, Stubbmann-Kazakova Olesya, Kozel Volodymyr, Röschenthaler Gerd-Volker, Smiatek Jens, Winter Martin, Cekic-Laskovic Isidora
Forschungszentrum Jülich GmbH Helmholtz-Institute Münster , Corrensstrasse 46 , 48149 Münster , Germany.
Institute for Computational Physics, University of Stuttgart , Allmandring 3 , 70569 Stuttgart , Germany.
ACS Appl Mater Interfaces. 2019 May 8;11(18):16605-16618. doi: 10.1021/acsami.9b03359. Epub 2019 Apr 26.
Two selected and designed fluorinated cyclic phosphorus(III)-based compounds, namely 2-(2,2,3,3,3-pentafluoropropoxy)-1,3,2-dioxaphospholane (PFPOEPi) and 2-(2,2,3,3,3-pentafluoro-propoxy)-4-(trifluormethyl)-1,3,2-dioxaphospholane (PFPOEPi-1CF), were synthesized and comprehensively characterized for high voltage application in lithium-ion batteries (LIBs). Cyclic voltammetry (CV) and constant current cycling were conducted, followed by post mortem analysis of the NMC111 electrode surface via scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). To support and complement obtained experimental results, density functional theory (DFT) calculations and molecular dynamics (MD) simulations were performed. Theoretical and experimental findings show that the considered phospholane molecule class enables high voltage LIB application by sacrificial decomposition on the cathode surface and involvement in the formation of a cathode electrode interphase (CEI) via polymerization reaction. In addition, obtained results point out that the introduction of the CF group has a significant influence on the formation and dynamics of the CEI as well as on the overall cell performance, as the cell impedance as well as the thickness of the CEI is increased compared to the cells containing PFPOEPi, which results in a decreased cycling performance. This systematic approach allows researchers to understand the structure-reactivity relationship of the newly synthesized compounds and helps to further tailor the vital physicochemical properties of functional electrolyte additives relevant for high voltage LIB application.
合成了两种经过筛选和设计的含氟环状磷(III)基化合物,即2-(2,2,3,3,3-五氟丙氧基)-1,3,2-二氧杂磷环戊烷(PFPOEPi)和2-(2,2,3,3,3-五氟丙氧基)-4-(三氟甲基)-1,3,2-二氧杂磷环戊烷(PFPOEPi-1CF),并对其进行了全面表征,以用于锂离子电池(LIBs)的高压应用。进行了循环伏安法(CV)和恒流循环,随后通过扫描电子显微镜(SEM)和X射线光电子能谱(XPS)对NMC111电极表面进行了事后分析。为了支持和补充所获得的实验结果,进行了密度泛函理论(DFT)计算和分子动力学(MD)模拟。理论和实验结果表明,所考虑的磷环戊烷分子类能够通过在阴极表面的牺牲分解以及通过聚合反应参与阴极电极界面(CEI)的形成,从而实现LIB的高压应用。此外,所获得的结果指出,CF基团的引入对CEI的形成和动力学以及整体电池性能有显著影响,因为与含有PFPOEPi的电池相比,电池阻抗以及CEI的厚度增加,这导致循环性能下降。这种系统方法使研究人员能够理解新合成化合物的结构-反应性关系,并有助于进一步调整与LIB高压应用相关的功能性电解质添加剂的重要物理化学性质。